【24h】

Neuromodulation Advances in the next five years

机译:未来五年内的神经调节促进

获取原文

摘要

Neuromodulation (deep brain stimulation; DBS) has become an established treatment for movement disorders (e.g., Parkinson's disease), and is in trials for refractory epilepsy, headache, and certain mood disorders. Two main themes will advance DBS significantly in the next five years: closed-loop DBS, that is, feedback from brain electrical activity to direct the stimulation; and computational analysis (CA)—electrophysiological modeling to enhance DBS. Closed-loop DBS is currently in clinical trials for refractory epilepsy. New imaging techniques offer preoperative modeling for DBS surgery, including nerve fiber tracts (diffusion tensor imaging), and imaging of volume of tissue activated by a specific electrode. CA techniques for DBS include mathematical models of the abnormally synchronized electrical activity which underlies epilepsy, movement disorders, and likely many mood disorders as well. By incorporating feedback loops and multiple recording and/or stimulating sites, the abnormally synchronized brain electrical activity can be desynchronized, then "unlearned" ("unkindling" in epilepsy). Characteristics of DBS utilizing CA include low frequency rather than high frequency stimulation; multiple stimulation and/or recording sites; likely 10-fold or more reduction in electrical current needs (much smaller "pulse generators"); more focused and less disruptive stimulation—fewer unwanted side effects; and potential to "cure" certain disorders by resetting abnormal firing patterns back to normal. These advantages of more sophisticated DBS techniques bring the following challenges, which may require a decade of research before reaching clinical practice because many brain disorders involve neurotransmitter abnormalities (e.g., dopamine in Parkinson's disease and certain mood disorders). Namely, how do we monitor and modulate neurotransmitters in addition to electrical activity? How do we get multiple microelectrodes into the brain in a minimally invasive manner? In the accompanying article, I address these two issues and offer some potential solutions.
机译:神经调节(深脑刺激; DBS)已成为运动障碍(例如,帕金森病)的建立治疗,并在难治性癫痫,头痛和某些情绪障碍中进行试验。两个主要主题将在未来五年内显着提高DBS:闭环DBS,即脑电活动引导刺激的反馈;和计算分析(CA)用于增强DBS的电体生理学建模。闭环DBS目前在难治性癫痫的临床试验中。新的成像技术为DBS手术提供术前建模,包括神经纤维束(扩散张量成像)和由特定电极激活的组织体积的成像。 DBS的CA技术包括异常同步电活动的数学模型,其潜在癫痫,运动障碍和可能许多情绪障碍。通过掺入反馈回路和多个记录和/或刺激性位点,可以将异常同步的脑电活动进行去同步,然后“未解决”(癫痫中的“不友为”)。利用CA的DBS特性包括低频而不是高频刺激;多种刺激和/或记录网站;电流需求可能降低10倍或更多(更小的“脉冲发生器”);更集中,破坏性刺激较少 - 更少的不必要的副作用;通过将异常烧制模式重置为正常“来固化”某些疾病的潜力。更复杂的DBS技术的这些优点带来了以下挑战,这可能需要在达到临床实践之前需要十年的研究,因为许多脑疾病涉及神经递质异常(例如,多巴胺在帕金森病和某些情绪障碍中)。即,除了电气活动外,我们如何监测和调制神经递质?我们如何以最微创的方式将多个微电极进入大脑?在随附的文章中,我解决了这两个问题并提供了一些潜在的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号