首页> 外文会议>Asia-Pacific Conference on Combustion >Numerical Investigation of Advanced Low Temperature Combustion Techniques in Diesel Engine
【24h】

Numerical Investigation of Advanced Low Temperature Combustion Techniques in Diesel Engine

机译:柴油发动机先进低温燃烧技术的数值研究

获取原文

摘要

Diesel engines, also known compression ignition (CI) engines, are more popular over gasoline engines due to their undisputed benefit of fuel economy. However, diesel engines primarily produce oxides of nitrogen (NO_x) and particulate matter (PM) which are toxic for human health as well as environmental. Hence, regulatory bodies are imposing stringent restrictions on these pollutants. Recent studies suggested that in-cylinder solutions like low temperature combustion (LTC) and multiple injection strategies are efficient techniques to reduce these emissions. In this work, Converge computational fluid dynamics (CFD) tool was used to simulate combustion for experimentally optimized LTC and optimum two-shot injection with LTC strategies to get a better understanding of in-cylinder processes and emission formation. A lower peak combustion temperature, lower percentages of oxygen (O_2) and less available time for the reactions with optimized LTC run and optimum two-shot injection strategies were the reason behind a significant reduction in NO_x (~98%) emissions with these strategies. Results of the study showed that a downward motion of piston for most of the period during fuel injection with optimized LTC strategy improved the mixing rate of fuel with surrounding air. As a result, lower PM emissions were achieved with optimized LTC strategy.
机译:柴油发动机,又称压缩点火(CI)发动机,超过汽油机更受欢迎,因为它们的燃油经济性的无可争议的优势。然而,柴油发动机,主要产生其是有毒的对人类健康和环境的氮(NO_x的)和颗粒物质(PM)的氧化物。因此,监管机构都在这些污染物气势严格的限制。最近的研究表明,在缸内像低温燃烧(LTC)和多次喷射策略的解决方案是有效的技术,以减少这些排放物。在这项工作中,收敛计算流体动力学(CFD)工具被用于为实验优化LTC和最佳两次注射用LTC战略模拟燃烧,以获得更好的缸内过程和发射地层的理解。较低的峰值燃烧温度,氧(O_2)和较少的可用时间具有优化LTC运行和最佳两次注射策略反应的较低百分比分别为后面在NO_x的(〜98%)与这些策略排放显著减少的原因。该研究的结果表明,燃料喷射具有优化LTC策略期间活塞的大部分期间中的向下运动改善的燃料的混合率与周围空气中。其结果是,降低PM排放,用优化LTC策略来实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号