首页> 外文会议>ASME Global Congress on Nanoengineering for Medicine and Biology >BLEBBING DYNAMICS, SINGLE CELL FORCE MEASUREMENTS, AND THE INFLUENCE OF CYTOCHALASIN D ON GLIOBLASTOMA MULTIFORME CELLS USING STEP FIBERS
【24h】

BLEBBING DYNAMICS, SINGLE CELL FORCE MEASUREMENTS, AND THE INFLUENCE OF CYTOCHALASIN D ON GLIOBLASTOMA MULTIFORME CELLS USING STEP FIBERS

机译:使用步进纤维的Blebbing动力学,单细胞力测量和细胞蛋白D对胶质母细胞瘤多形体细胞的影响

获取原文

摘要

Classified as a grade IV tumor of the central nervous system, Glioblastoma multiforme (GBM) arises from the glia. A poor understanding of tumor metastasis and limited treatment options have led to increase in deaths of patients suffering from GBM. Studying glioma behavior using aligned structures that mimic native glioblastoma metastatic path is challenging. In this study, we utilize a previously described non-electrospinning platform to manufacture aligned 3D structures called STEP nanonets that not only allows the study of individual cell-nanofiber interaction, but also allows the calculation of migratory forces using beam mechanics. In particular, the blebbing dynamics, force generation, and the effect of an actin disruptor, Cytochalasin D have been investigated on a glioma cell line (DBTRG, Denver Based Tumor Research Group). It was observed that cell pulled onto the nanofibers causing measurable deflections when they were in spread and non-blebbing conditions. In non-spread configurations while attached to fibers, the cells acquired spherical configurations and resumed blebbing. The average migratory force generated by cells exposed to DMSO (control, 1:1000 dilution) using nanonets of 2μm by 400nm fibers was 0.58±0.06nN. Actin disruptor, Cytochalasin D severely compromised the ability of the glioma cells to migrate causing no deflection of the fibers. Forces exerted by tumor cells on their native microenvironment affects their ability to metastasize, invade and proliferate. While the result presents actin disruptor as a potential target to minimize metastasis, the influence of other cytoskeleton disruptors can also be studied using the platform. Moreover, the results obtained from the study can be utilized to better understand the individual cell - nanofibers interaction which can shed light on how cells interact with their native environment during metastasis.
机译:分类为中枢神经系统的级别肿瘤,胶质母细胞瘤多形状(GBM)来自胶质度。对肿瘤转移和有限的治疗方案的理解较差导致患有GBM的患者死亡的增加。使用与模拟天然胶质母细胞瘤转移路径有挑战性的对齐结构研究胶质瘤行为。在该研究中,我们利用先前描述的非静电纺丝平台来制造称为步进纳米型的对准的3D结构,其不仅允许研究单个细胞纳米恐怖的相互作用,而且还允许使用光束力学计算迁移力。特别地,已经研究了在胶质瘤细胞系(DBTRG,基于丹佛的肿瘤研究组)上研究了肌动蛋白干扰剂,细胞蛋白酶D细胞蛋白酶D的膨胀动力学,力产生和效果。观察到细胞拉到纳米纤维上,当它们在涂抹和非膨胀条件下时导致可测量的挠曲。在连接到纤维的同时在非传播配置中,小区获取球形配置并恢复了BLEBBIBLE。通过将2μm的DMSO(对照,1:1000稀释)暴露于DMSO(对照,1:1000稀释)产生的平均迁移力,其中纳米纤维为400nm纤维为0.58±0.06nn。肌动蛋白破坏剂,细胞蛋白D严重影响了胶质瘤细胞迁移的能力,从而导致纤维的偏转。肿瘤细胞对其天然微环境施加的力会影响它们转移,侵入和增殖的能力。虽然结果呈现肌动蛋白被破坏剂作为最小化转移的潜在目标,但也可以使用平台研究其他细胞骨架破坏者的影响。此外,从该研究获得的结果可用于更好地理解各种细胞纳米纤维相互作用,其可以在转移期间如何与其天然环境相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号