首页> 外文会议>International Microsystems, Packaging, Assembly and Circuits Technology Conference >Novel Thermal Model Development for System Level Thermal Performance
【24h】

Novel Thermal Model Development for System Level Thermal Performance

机译:用于系统级热性能的新型热模型开发

获取原文

摘要

In general, the system level-thermal performance analysis, IC packages are simplified to a compact thermal model (CTM) from the detailed model for computer calculated time reduction. The CTMs include 2R, Delphi compact thermal model (DCTM) and compact conduction model (CCM) are widely used. However, these simply models and methods are difficulty to achieve accurate temperature result in complex environments and the prediction of temperature interacted with other components are also challenge. In this work, the novel boundary condition (BC) training scheme through numerical calculation methods was developed, which will create a more accurate and efficient DCTM and CCM. The BC set considers the impacts of the IC power, radiation emissivity, ambient temperature, other heat sources, PCB size, heat sink size and air velocity; the levels of these factors cover the range of common environments, which makes the training result could close to the divergence system environments. These models can use to provide more realistic CTM in system level thermal performance evaluation.The novel DCTM include multiple layers, each layer has 9 nodes, and 55 thermal resistances. Based on the partial result of 86 BCs training, the temperature is the similar result for outer nodes, and each layer has been decreased to 3 nodes and only 11 thermal resistances form the optimal resistance set by response surface optimization (RSO) and genetic algorithm-artificial neural network (GA-ANN) mthods. In the other hand, novel CCM has several cuboids based on different package structure and replaces the thermal resistance to thermal conductivity. Finally, the optimal thermal conductivity and size set is determined by RSO and GA-ANNThe results show that the new BC set can be used to train for the novel DCTM and CCM by numerical method. Compared with these current modeling methods, the novel CCM can meet the requirements of time performance, and it is also superior to other modeling in the accuracy of the model. In addition, it can also correctly reflect the impact of different environment and the effect on the temperature of other components.
机译:通常,将系统级热性能分析的IC封装从详细模型简化为紧凑的热模型(CTM),以减少计算机计算的时间。 CTM包括2R,Delphi紧凑型热模型(DCTM)和紧凑型传导模型(CCM)被广泛使用。然而,这些简单的模型和方法难以在复杂的环境中获得准确的温度结果,并且与其他组件相互作用的温度预测也面临挑战。在这项工作中,通过数值计算方法开发了新颖的边界条件(BC)训练方案,这将创建一个更准确和有效的DCTM和CCM。 BC集考虑了IC功率,辐射发射率,环境温度,其他热源,PCB尺寸,散热器尺寸和空气速度的影响;这些因素的水平涵盖了常见环境的范围,这使得训练结果可能接近发散系统环境。这些模型可用于在系统级热性能评估中提供更逼真的CTM。新颖的DCTM包括多层,每层具有9个节点和55个热阻。根据86 BCs训练的部分结果,外部节点的温度是相似的结果,并且每个层已减少到3个节点,并且只有11个热阻形成了通过响应面优化(RSO)和遗传算法设定的最佳电阻-人工神经网络(GA-ANN)方法。另一方面,新型CCM具有基于不同封装结构的多个长方体,并取代了对导热性的热阻。最后,通过RSO和GA-ANN确定最优的热导率和尺寸集。结果表明,新的BC集可用于通过数值方法来训练新的DCTM和CCM。与目前的建模方法相比,新颖的CCM可以满足时间性能的要求,并且在模型准确性方面也优于其他建模方法。此外,它还可以正确反映不同环境的影响以及对其他组件温度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号