首页> 外文会议>International symposium on algorithms and experiments for wireless sensor networks >The Impact of the Gabriel Subgraph of the Visibility Graph on the Gathering of Mobile Autonomous Robots
【24h】

The Impact of the Gabriel Subgraph of the Visibility Graph on the Gathering of Mobile Autonomous Robots

机译:可见性图的加百利子图对移动自主机器人聚集的影响

获取原文

摘要

In this work, we reconsider the well-known Go-To-The-Center algorithm due to Ando, Suzuki, and Yamashita [2] for gathering in the plane n autonomous mobile robots with limited viewing range. The above authors have introduced it as a discrete, round-based algorithm and proved its correctness. In [8], by Degener et al. it is shown that the algorithm gathers in Θ (n~2) rounds. Remarkably, this algorithm exploits the fact, that during its execution, many collisions of robots occur. Such collisions are interpreted as a success because it is assumed that such collided robots behave the same from now on. This is o.k. under the assumption, those robots have no extent. Otherwise, collisions should be avoided. In this paper, we consider a continuous Go-To-The-Center (GTC) strategy in which the robots continuously observe the positions of their neighbors and adapt their speed (assuming a speed limit) and direction. Our first results are time bounds of O (n~2) for gathering in two-dimensional Euclidean space, and Θ (n) for the one-dimensional case. Our main contribution is the introduction and evaluation of a continuous algorithm which performs Go-To-The-Center considering only the neighbors of a robots w.r.t. the Gabriel subgraph of the visibility graph (GTGC). We show that this modification still correctly executes gathering in one and two dimensions, with the same time bounds as above. Simulations exhibit a severe difference of the behavior of the GTC and the GTGC strategy: Whereas lots of collisions occur during a run of the GTC strategy, typically only one, namely the final collision occurs during a run of the GTGC strategy. We can prove this "collisionless property" of the GTGC algorithm for the one-dimensional case. In the case of the two-dimensional Euclidean space, we conjecture that the "collisionless property" holds for almost every initial configuration.
机译:在这项工作中,我们重新考虑了由Ando,Suzuki和Yamashita [2]提出的著名的Go-To-The-Center算法,该算法用于在飞机上收集视野范围有限的n台自动移动机器人。以上作者已经将其作为离散的,基于回合的算法进行了介绍,并证明了其正确性。在[8]中,Degener等人。结果表明,该算法在Θ(n〜2)轮内聚集。值得注意的是,该算法利用了以下事实:在执行过程中,发生了许多机器人碰撞。之所以认为这种碰撞是成功的,是因为从现在开始就假定此类碰撞的机器人的行为相同。还行吧。在这种假设下,那些机器人是没有范围的。否则,应避免碰撞。在本文中,我们考虑了一种持续不断的去中心化(GTC)策略,在该策略中,机器人不断观察邻居的位置并调整其速度(假设有速度限制)和方向。我们的第一个结果是在二维欧几里得空间中聚集的时间边界为O(n〜2),在一维情况下为Θ(n)。我们的主要贡献是引入和评估了一种连续算法,该算法仅考虑机器人w.r.t的邻居就可以执行Go-To-The-Center。可见度图(GTGC)的Gabriel子图。我们显示,此修改仍然可以正确地执行一维和二维的采集,并且具有与上述相同的时间范围。模拟显示GTC和GTGC策略的行为存在严重差异:尽管在GTC策略的运行期间发生了许多冲突,但通常只有一次冲突,即在GTGC策略的运行期间发生了最终冲突。我们可以在一维情况下证明GTGC算法的这种“无冲突性”。在二维欧几里德空间的情况下,我们推测几乎所有初始配置都具有“无碰撞属性”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号