首页> 外文会议>World biomaterials congress >The effects of matrix stiffness on mesenchymal stem cell chondrogenesis in 3d is dependent on crosslinking mechanisms and biochemical cues
【24h】

The effects of matrix stiffness on mesenchymal stem cell chondrogenesis in 3d is dependent on crosslinking mechanisms and biochemical cues

机译:基质刚度对3d间充质干细胞软骨形成的影响取决于交联机制和生化线索

获取原文

摘要

Introduction: Matrix stiffness has been shown to play an important role in regulating stem cell differentiation in 2D, yet how matrix stiffness influence stem cell chondrogenesis in 3D remain largely unknown. Hydrogel with varying stiffness could be achieved using materials with different crosslinking mechanisms and degradation profiles. PEGDMA and methacrylated chondroitin sulfate (CS) are two most commonly used photopoiymerizable hydrogels for guiding chondrogenesis of MSCs for cartilage repair. While varying concentration of both materials can lead to simultaneous changes in hydrogel stiffness, PEG is bioinert and non-degradable, and CS is a natural component of cartilage and degradable by cell-secreted enzymes. The goal of this study is to examine the effects of matrix stiffness on modulating chondrogenesis of mesenchymal stem cells in 3D, and investigate the effects of increasing hydrogel stiffness by adding additional non-degradable PEGDMA or increasing methacrylation of CS, on MSC fate. Materials and Methods: Hydrogels with tunable stiffness were fabricated by either 1) increasing degree of methacrylation of CS, thereby increasing crosslinking density (using regular CS-MA or highly methacrylated CS (hCS-MA) or 2) adding non-degradable PEGDMA. A total of six hydrogel formulations were examined (Table 1). Parameters to vary include two CS concentrations (3% and 5% w/v), two degree of methacylation of CS (normal or high). To match the stiffness of 3% or 5% hCS-MA, PEGDMA were added into 3% or 5% normal CS-MA. Passage 6 human MSCs were encapsulated in all hydrogel groups and cultured for 21 days in chondrogenic medium with 10ng/ml TGF-β3, Outcomes were analyzed via gene expression, biochemical assays (DNA, sGAG, hydroxyproline) and histology. Results: Mechanical testing confirmed that hCS-MA increased hydrogel stiffness compared to regular CS-MA hydrogels at comparable CS concentrations (3% or 5%). Adding additional PEG allowed achieving comparable hydrogel stiffness with hCS-MA while keeping CS concentration constant (Fig 1). In 5% CS groups, in which adding PEG (group 6) led to substantial down-regulation of cartilage markers (Agg and Col Ⅱ) compared to hCS-MA (Fig 2A). The opposite trend was observed in 3% CS groups. Increasing hydrogel stiffness using different mechanisms invariably led to higher MMP 13 expression (groups 2,3,5,6) (Fig 2A). Biochemical analyses (DNA, sGAG, collagen) showed that MSCs encapsulated in hCS-MA hydrogels produced more sGAG and collagen as compared to their corresponding PEG containing hydrogels with comparable stiffness (Fig 2B). Safranin-O and collagen Ⅱ staining showed that MSCs in CS-MA and hCS-MA hydrogels were able to completely remodel their hydrogels and form interconnected neocartilage matrix (groups 1,2,4,5) (Fig 2D, E), while PEG-containing hydrogels restricted cell proliferation (Fig 2B) and new matrix production was limited to pericellular regions only. hCS-MA containing hydrogels also led to higher mechanical modulus as compared to the acellular control after 21 days (Fig 2C). Discussion: Our results showed that the effects of hydrogel stiffness on MSC chondrogenesis is highly dependent upon the mechanisms of crosslinking and biochemical cues. Increasing hydrogel stiffness by increasing methacrylation of fully degradable CS hydrogels were more superior to PEGDMA containing hydrogels in guiding MSC proliferation, chondrogenesis and neocartilage deposition in an interconnected manner leading to superior mechanical property restoration.
机译:简介:基质刚度在2D调节干细胞分化中起着重要作用,但是,基质刚度如何影响3D中的干细胞软骨形成仍然未知。使用具有不同交联机理和降解曲线的材料可以实现具有不同刚度的水凝胶。 PEGDMA和甲基丙烯酸硫酸软骨素(CS)是两种最常用的可光聚合的水凝胶,用于指导MSC软骨形成的软骨修复。虽然两种材料的浓度不同会导致水凝胶硬度同时发生变化,但PEG具有生物惰性且不可降解,而CS是软骨的天然成分,可被细胞分泌的酶降解。这项研究的目的是检查基质刚度在3D模式下调节间充质干细胞软骨形成的作用,并通过添加额外的不可降解PEGDMA或增加CS的甲基丙烯酸对MSC命运来研究提高水凝胶刚度的作用。材料和方法:通过以下方法制造具有可调节硬度的水凝胶:1)增加CS的甲基丙烯酸化程度,从而增加交联密度(使用常规CS-MA或高甲基丙烯酸CS(hCS-MA)或2),并添加不可降解的PEGDMA。总共检查了六种水凝胶制剂(表1)。变化的参数包括两个CS浓度(3%和5%w / v),两个甲基化的CS甲基化程度(正常或高)。为了匹配3%或5%hCS-MA的刚度,将PEGDMA添加到3%或5%的普通CS-MA中。将第6代人MSC封装在所有水凝胶组中,并在含有10ng / mlTGF-β3的软骨形成培养基中培养21天,通过基因表达,生化分析(DNA,sGAG,羟脯氨酸)和组织学分析结果。结果:机械测试证实,在可比较的CS浓度(3%或5%)下,hCS-MA与常规CS-MA水凝胶相比增加了水凝胶刚度。添加额外的PEG可使hCS-MA达到可比的水凝胶硬度,同时保持CS浓度恒定(图1)。与hCS-MA相比,在5%CS组中,加入PEG(第6组)导致软骨标志物(Agg和ColⅡ)显着下调(图2A)。在3%的CS组中观察到相反的趋势。使用不同的机制增加水凝胶的硬度总是导致较高的MMP 13表达(第2、3、5、6组)(图2A)。生化分析(DNA,sGAG,胶原蛋白)表明,与相应的含PEG的水凝胶相比,包裹在hCS-MA水凝胶中的MSC产生了更多的sGAG和胶原蛋白(图2B)。番红O和胶原Ⅱ染色表明,CS-MA和hCS-MA水凝胶中的MSC能够完全重塑其水凝胶并形成相互连接的新软骨基质(1、2、4、5组)(图2D,E),而PEG含水凝胶限制了细胞增殖(图2B),新基质的产生仅限于细胞周围区域。与21天后的脱细胞对照组相比,含hCS-MA的水凝胶还导致更高的机械模量(图2C)。讨论:我们的结果表明,水凝胶刚度对MSC软骨形成的影响高度依赖于交联和生化线索的机制。通过增加可完全降解的CS水凝胶的甲基丙烯酸酯来增加水凝胶刚度,在以相互联系的方式引导MSC增殖,软骨形成和新软骨沉积方面,比含PEGDMA的水凝胶更优越,从而导致优异的机械性能恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号