首页> 外文会议>International Workshop on Biometrics and Forensics >Data forensic techniques using Benford's law and Zipf's law for keystroke dynamics
【24h】

Data forensic techniques using Benford's law and Zipf's law for keystroke dynamics

机译:使用Benford定律和Zipf定律进行击键动力学的数据取证技术

获取原文

摘要

The selection and application of biometrics traits for authentication and identification have recently attracted a significant amount of research interest. In this paper we investigate the use of keystroke data to distinguish between humans using keystroke biometric systems and non-humans for auditing application. Recently, Benford's Law and Zipf's Law, which are both discrete Power law probability distributions, have been effectively used to detect fraud and discriminate between genuine data and fake/tampered data. As such, our motivation is to apply the Benford's Law and Zipf's Law on keystroke data and to determine whether they follow these laws and discriminate between humans using keystroke biometric systems from non-humans. From the results, we observe that, the latency values of the keystroke data from humans actually follow the Benford's law and Zipf's law, but not the duration values. This implies that, latency values from humans would follow the two laws, whereas the latency values from non-humans would deviate from the Benford's law and Zipf's law. Even though, the duration values from humans deviates from the Benford's law, they do follow a pattern that we can develop an accurate model for the duration values. We perform experiments using the benchmark data set developed by Killourhy and Maxion, CMU [1] and obtain divergences of 0.0008, 0.029 and 0.05 for the keyup-keydown (latency), keydown-keydown, and duration of the keystroke data, respectively. Moreover, P-value's of 0.7770, 0.6230 and 0.0160 are obtained for the keyup-keydown (latency), keydown-keydown, and duration of the keystroke data, respectively. We observe that the latency (which is the time elapsed between release of the first key and pressing down of the next key) is one of the most important features used by administrators for auditing purposes to detect anomalies during their employees logging into their company system.
机译:用于识别和鉴定的生物特征的选择和应用近来吸引了大量的研究兴趣。在本文中,我们调查了击键数据的使用,以区分使用击键生物识别系统的人和非人进行审计的应用程序。最近,都是离散幂定律概率分布的本福德定律和齐普夫定律已被有效地用于检测欺诈并区分真实数据和伪造/篡改数据。因此,我们的动机是对击键数据应用本福德定律和齐普夫定律,并确定它们是否遵循这些定律并使用击键生物特征识别系统将人与非人区分开。从结果中,我们观察到,来自人类的击键数据的等待时间值实际上遵循本福德定律和齐普夫定律,而不是持续时间值。这意味着,来自人类的潜伏期值将遵循这两个定律,而来自非人类的潜伏期值将偏离本福德定律和齐普夫定律。即使人类的持续时间值偏离了本福德定律,他们的确遵循了一种模式,即我们可以为持续时间值开发准确的模型。我们使用Killourhy和Maxion,CMU [1]开发的基准数据集进行实验,并且对于击键数据(延迟),击键时间和击键数据的持续时间分别获得了0.0008、0.029和0.05的差异。而且,对于击键数据的击键-击键(等待时间),击键-击键和持续时间分别获得0.7770、0.6230和0.0160的P值。我们观察到,延迟(从释放第一个键到按下下一个键之间的时间)是管理员用于审核目的的最重要功能之一,目的是在员工登录公司系统期间进行异常检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号