首页> 外文会议>International Workshop on Biometrics and Forensics >Data forensic techniques using Benford's law and Zipf's law for keystroke dynamics
【24h】

Data forensic techniques using Benford's law and Zipf's law for keystroke dynamics

机译:使用本福德法和ZIPF法律进行击键动态的数据取证技术

获取原文

摘要

The selection and application of biometrics traits for authentication and identification have recently attracted a significant amount of research interest. In this paper we investigate the use of keystroke data to distinguish between humans using keystroke biometric systems and non-humans for auditing application. Recently, Benford's Law and Zipf's Law, which are both discrete Power law probability distributions, have been effectively used to detect fraud and discriminate between genuine data and fake/tampered data. As such, our motivation is to apply the Benford's Law and Zipf's Law on keystroke data and to determine whether they follow these laws and discriminate between humans using keystroke biometric systems from non-humans. From the results, we observe that, the latency values of the keystroke data from humans actually follow the Benford's law and Zipf's law, but not the duration values. This implies that, latency values from humans would follow the two laws, whereas the latency values from non-humans would deviate from the Benford's law and Zipf's law. Even though, the duration values from humans deviates from the Benford's law, they do follow a pattern that we can develop an accurate model for the duration values. We perform experiments using the benchmark data set developed by Killourhy and Maxion, CMU [1] and obtain divergences of 0.0008, 0.029 and 0.05 for the keyup-keydown (latency), keydown-keydown, and duration of the keystroke data, respectively. Moreover, P-value's of 0.7770, 0.6230 and 0.0160 are obtained for the keyup-keydown (latency), keydown-keydown, and duration of the keystroke data, respectively. We observe that the latency (which is the time elapsed between release of the first key and pressing down of the next key) is one of the most important features used by administrators for auditing purposes to detect anomalies during their employees logging into their company system.
机译:用于认证和识别的生物识别性特性的选择和应用最近吸引了大量的研究兴趣。在本文中,我们调查使用击键数据来区分人类使用击键生物识别系统和非人类进行审计应用。近日,本福德的法律和ZIPF的法律,这都是离散权力法概率分布,已有效地用于检测欺诈和歧视真正的数据和假/篡改数据。因此,我们的动机是将Benford的法律和Zipf的法律应用于击键数据,并确定他们是否遵守这些法律并使用来自非人类的击键生物识别系统歧视人类。从结果中,我们观察到,人类的击键数据的延迟值实际上遵循本福德的法律和ZIPF的法律,但不是持续时间值。这意味着,人类的延迟值将遵循这两种法律,而非人类的延迟价值将偏离本公司的法律和ZIPF的法律。尽管如此,人类的持续时间值偏离了本旗的法律,他们确实遵循了我们可以为持续时间值开发准确模型的模式。我们使用由碱和最大,CMU [1]开发的基准数据集进行实验,并在键键(延迟),键盘键盘和击键数据的持续时间分别获得0.0008,0.029和0.05的分发。此外,P值为0.7770,0.6230和0.0160分别获得了键键(延迟),键盘键和击键数据的键盘次数和击缝数据的持续时间。我们观察到延迟(这是第一个键的发布和下一个密钥的释放之间经过的时间)是管理员使用的最重要的功能之一,以便在登录其公司系统期间检测异常以检测异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号