【24h】

Doping of Nanowires and Atomic Films

机译:掺杂纳米线和原子膜

获取原文

摘要

Recent breakthroughs in the growth of freestanding one-dimensional (1D) semiconductor nanowires and two-dimensional (2D) atomic films have opened up great opportunities to revolutionize technologies in nanoscale electronics, optoelectronics, spintronics, and sensors. Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in 1D and 2D systems leads to carrier localization, limiting practical applications of doping in nanostructures because of poor carrier mobility. We proposed a novel concept, namely, confined doping in nanostructures, to significantly increase carrier mobility [1, 2]. In our approach, distribution of dopants in a nanostructure is confined within a particular region in the nanostructure so that the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in a 1D nanowire and in a 2D atomic film with confined doping exhibits rather counterintuitive behavior in the regime of heavy doping, namely, the larger the concentration of dopants the higher the carrier mobility. A nanowire with confined doping undergoes a quasi-metal/insulator transition while a 2D atomic film with confined doping exhibits a true metal-insulator transition. We have also conducted first-principles and molecular dynamics studies for the stable surface structures of silicon nanowires [3, 4]. One of our main findings is the existence of magic numbers for silicon nanowires. We also found that Si nanowires with diameters smaller than 1.7 nm prefer a shape that has a square cross section with sharp corners. These findings are important for guiding the syntheses of Si nanowires and for tailoring their transport properties through doping.
机译:独立的一维(1D)半导体纳米线和二维(2D)原子膜的增长方面的最新突破为革新纳米级电子,光电,自旋电子和传感器技术带来了巨大的机遇。掺杂是控制传统半导体工业中电子传输的基本元素,人们普遍预期其在控制纳米结构的传输特性中也将发挥重要作用。然而,传统的电子无序理论预测一维和二维系统中的掺杂会导致载流子定位,由于载流子迁移率较差,限制了纳米结构中掺杂的实际应用。我们提出了一种新颖的概念,即在纳米结构中进行受限掺杂,以显着提高载流子迁移率[1、2]。在我们的方法中,掺杂剂在纳米结构中的分布被限制在纳米结构的特定区域内,使得掺杂的纳米结构成为包括掺杂的子系统和完美的晶体子系统的耦合系统。我们表明,在一维纳米线和二维原子膜中具有受限掺杂的载流子迁移率在重掺杂过程中表现出相当违反直觉的行为,即,掺杂剂浓度越大,载流子迁移率越高。具有约束掺杂的纳米线经历准金属/绝缘体跃迁,而具有约束掺杂的2D原子膜表现出真正的金属-绝缘体跃迁。我们还对硅纳米线的稳定表面结构进行了第一性原理和分子动力学研究[3,4]。我们的主要发现之一是硅纳米线的幻数的存在。我们还发现,直径小于1.7 nm的Si纳米线更喜欢具有方形截面和尖角的形状。这些发现对于指导Si纳米线的合成以及通过掺杂调整其传输性能非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号