您现在的位置: 首页> 研究主题> 马铃薯田

马铃薯田

马铃薯田的相关文献在1990年到2022年内共计110篇,主要集中在植物保护、农作物、农业基础科学 等领域,其中期刊论文93篇、会议论文4篇、专利文献14893篇;相关期刊51种,包括现代化农业、中国马铃薯、吉林蔬菜等; 相关会议2种,包括第十届全国杂草科学大会、2021年中国马铃薯大会等;马铃薯田的相关文献由227位作者贡献,包括刘洋、李斐、张等宏等。

马铃薯田—发文量

期刊论文>

论文:93 占比:0.62%

会议论文>

论文:4 占比:0.03%

专利文献>

论文:14893 占比:99.35%

总计:14990篇

马铃薯田—发文趋势图

马铃薯田

-研究学者

  • 刘洋
  • 李斐
  • 张等宏
  • 张远学
  • 王甄
  • 肖春芳
  • 郑庆伟
  • 闫雷
  • 高剑华
  • 刘士平
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 毛彦芝; 朱梓绮; 郭梅; 董学志; 王文重; 杨帅; 魏琪; 闵凡祥; 李庆全; 孔德崴
    • 摘要: 在有腐烂茎线虫发生的马铃薯田土壤中共发现9属植物寄生线虫。其中,短体属(Pratylenchus)、茎属(Ditylenchus)、拟滑刃属(Paraphelenchus)和真滑刃属(Aphelechus)为优势属,野外垫刃属(Aglenchus)、孢囊属(Heterodera)、螺旋属(Helicotylenchus)和发垫刃属(Trichotylenchus)为常见属,轮属(Criconemoides)为稀有属;植物寄生线虫在田间有集中连片分布的特点;春季马铃薯田植物寄生线虫主要分布在10~20 cm土层中,之后随着深度的增加数量逐渐减少;茎属线虫具有时期动态,春季线虫密度最小,秋季线虫密度最大。
    • 徐成勇; 杨绍江; 曹吉祥
    • 摘要: 为明确凉山州马铃薯田间杂草发生情况,在州内马铃薯春作区的盐源、昭觉、布拖等7个县,冬作区的会理、会东、宁南3个县(市),共30块样地,采用倒置“W”取样方法,对杂草发生情况进行调查与分析。结果表明:凉山州马铃薯田间杂草有34个科90个属113个种,其中孢子植物杂草2种、占1.8%,双子叶杂草87种、占77.0%,单子叶杂草24种、占21.2%。一年生杂草46种、占40.7%,一年生或二年生杂草9种、占8.0%,一年生或多年生杂草1种、占0.9%,二年生杂草3种、占2.7%,二年生或多年生杂草2种、占1.8%,多年生杂草52种、占46.0%。优势杂草为牛膝菊、酸模叶蓼2种。根据凉山州马铃薯的生产模式,提出了冬马铃薯种植区杂草防除采用“一封一盖”策略,春马铃薯种植区杂草防除采用“一封一杀”策略。
    • 李平
    • 摘要: 为了给马铃薯田杂草科学防治和预测预报提供依据,采用空间分布型检验、聚集强度指标检验和线性回归方法研究了马铃薯田苗期扁蓄田间分布型及其抽样技术.结果表明,马铃薯田扁蓄空间分布型呈聚集分布,其理论抽样模型为n=3.8416/D2(3.5077/(x)-0.59).
    • 郑庆伟
    • 摘要: 喷雾助剂在增强除草剂药效、提高除草剂对作物的安全性、降低除草剂用量、减轻环境污染等方面具有重要作用。为探明喷雾助剂对灭草松防除马铃薯田阔叶杂草藜的增强作用,并评价其强弱,甘肃省农业科学院植物保护研究所等单位科研人员选用卫士牌WS-18D型背负式电动喷雾器双圆锥雾喷头,对灭草松及其药液添加喷雾助剂在马铃薯苗期开展茎叶喷雾处理,药后15天调查对藜的株防效和鲜重防效,并计算药效增强指数。
    • 郑庆伟
    • 摘要: 近期,武汉科诺生物科技股份有限公司申请的32000IU/毫克苏云金杆菌G033A可湿性粉剂产品获批扩大使用范围登记,新增登记作物和防治对象为萝卜田黄条跳甲、玉米田草地贪夜蛾、番茄田棉铃虫(原有登记作物和防治对象为甘蓝田小菜蛾、马铃薯田甲虫)。这也是我国首次批准苏云金杆菌G033A在萝卜、玉米和番茄上登记。
    • 万伟帆; 李斐; 红梅; 常菲; 高海燕
    • 摘要: [目的]氨挥发和氧化亚氮排放是氮素损失的重要途径.内蒙古阴山北麓滴灌马铃薯田种植面积大,普遍存在过量施肥的问题.研究适宜的氮肥用量,利用脲酶抑制剂来抑制氨挥发和氧化亚氮排放,对提高当地氮肥利用率和减缓环境压力具有重要意义.[方法]田间试验分两年在内蒙古武川县两个村庄进行,供试地块种植马铃薯,采用滴灌技术.2015年设置4个处理,分别为:不施氮(CK);优化施氮模式,施N 180 kg/hm2(Opt);优化施氮减半模式,施N 90 kg/hm2(OptR);农民传统施肥量,施N 270 kg/hm2(Con).2016年试验处理根据2015年的结果进行调整,设置4个处理:不施氮(CK);优化施氮添加脲酶抑制剂模式,施N 162.6 kg/hm2(OptI);优化施氮模式,施N 162.6 kg/hm2(Opt);农民传统施肥量,施N 320 kg/hm2(Con).分别采用静态暗箱法和通气法采集氧化亚氮和氨气,每次施肥后,两天采集一次气体样品,氧化亚氮连续取样三次,氨气持续取样直至气体含量低于仪器检测值下限.[结果]氨挥发速率在施入尿素后第1~5 d出现峰值.Con处理2015和2016年氨挥发的最大峰值分别是13.2 mg/(m2·d)和5.3 mg/(m2·d),氨挥发累积量分别为N 3.61和3.96 kg/hm2;Opt处理的最大峰值分别为8.69 mg/(m2·d)和3.19 mg/(m2·d),累积挥发量分别为N 3.11和2.72 kg/hm2;OptR处理氨挥发速率最大峰值为5.63 mg/(m2·d),氨挥发累积量为2.66 kg/hm2,OptI处理氨挥发速率最大峰值为3.67 mg/(m2·d),氨挥发累积量为2.50 kg/hm2.氨挥发累积量随着氮肥用量的增加而增多,Con处理的氨挥发量显著高于其他处理;氧化亚氮排放量在施入尿素后第3 d达到峰值,Con处理2015和2016年的氧化亚氮排放峰值分别达到0.3 mg/(m2·d)和0.2 mg/(m2·d),氧化亚氮累积排放量分别为N 1.96和1.18 kg/hm2,显著高于其他处理;Opt处理两年的排放最大峰值均为0.11 mg/(m2·d),氧化亚氮累积排放量为N 0.95、0.69 kg/hm2;OptR的氧化亚氮排放量最大峰值为0.09 mg/(m2·d),累积量为0.90 kg/hm2.OptI的氧化亚氮排放量最大峰值为0.12 mg/(m2·d),氧化亚氮累积量为0.66 kg/hm2.相比Opt,OptI处理的氨挥发和氧化亚氮累积排放量分别降低了11.8%和16.7%,但未达到显著水平.氨挥发速率与土壤温度呈显著正相关,土壤温度的升高会显著增加氨挥发速率,土壤湿度的增加会抑制氨挥发速率,影响不显著.氧化亚氮的排放与土壤湿度呈显著正相关,土壤中水分增加会显著增加氧化亚氮的排放量,土壤温度与氧化亚氮排放成负相关,影响未达到显著水平.[结论]与农民传统施肥模式相比,优化施氮模式可显著降低氨挥发和氧化亚氮排放量,添加脲酶抑制剂未达到显著降低尿素氨挥发量和氧化亚氮排放的效果.土壤湿度和土壤温度在一定程度上影响着氨挥发速率和氧化亚氮的排放通量.在供试地区马铃薯田的施肥管理中,推荐可有效地降低氨挥发和氧化亚氮排放量的优化施氮模式.%[Objectives]Nitrous oxide emission and ammonia volatilization are important ways for nitrogen loss in calcareous soil. The planting area of potato in the northern Yinshan of Inner Mongolia is increasing year by year, and the problem of excessive fertilization is still common. The effects of nitrogen management and the addition of urease inhibitor were studied in this paper, so as to find a satisfactory way of inhibiting the ammonia volatilization and nitrous oxide emission in the area.[Methods]Monitoring was carried out in the field where potato had been grown for two successive years in two villages using drip irrigation technique. In 2015, 4 different nitrogen fertilizer levels were set up respectively: No N application (CK); N 90 kg/hm2 in reduced fertilization mode (OptR); N 180 kg/hm2 in optimized fertilization mode (Opt); N 270 kg/hm2 in conventional fertilization mode (Con). The treatments were regulated in 2016 according to the results of 2015, and the four treatments were:No N application (CK); N 162.6 kg/hm2 in optimized fertilization mode and added urease inhibitors in urea (OptI);N 162.6 kg/hm2 in optimized fertilization mode (Opt); N 320 kg/hm2 in conventional fertilization mode (Con). The static camera obscura and ventilation methods were used to monitor the amounts of N2O emission and ammonia volatilization. After each fertilization, the gas samples were collected for two days, and the N2O was continuously sampled for three times, and the NH3 was not stop sampling until the gas content was lower than the detection limit of the instrument.[Results]The ammonia volatilization reached peak after 1–5 days of nitrogen application in potato fields. The maximum ammonia volatilization in 2015 and 2016 were 13.2 mg/(m2·d) and 5.3 mg/(m2·d), and the accumulative volatilization were N 3.61 and 3.96 kg/hm2 under Con mode, respectively. The maximum peaks were 8.69 and 3.19 mg/(m2·d), and the accumulative volatilization were N 3.11 and 2.72 kg/hm2 under the Opt mode, respectively. The maximum volatilization peak was N 5.63 mg/ (m2·d), and the cumulative amount was N 2.66 kg/hm2 under OptR mode. The maximum peak was N 3.67 mg/(m2·d), and the cumulative volatilization was N 2.50 kg/hm2 under OptI mode. The cumulative ammonia volatilization was increased with the increase of nitrogen application rate. The amount of ammonia volatilization in Con mode was significantly higher than in the others. The content of N2O emission reached the peak after 3 days of N application. The cumulative N2O emission under Con mode was N 1.96 and 1.18 kg/hm2 respectively in 2015 and 2016 with the maximum peak of 0.3 mg/(m2·h) and 0.2 mg/(m2·h), respectively. The loss rate of N2O in Con mode was the highest, which was significantly higher than those in the others; N2O cumulative emissions in the Opt mode were 0.95 and 0.69 N kg/hm2, respectively, with the maximum peak of 0.11mg/(m2·h). The cumulative N2O emission was 0.90 kg/hm2 with the maximum peak value of 0.09 mg/ (m2·h) in OptR mode. The maximum peak value of N2O in the OptI was 0.12 mg/(m2·h), and the cumulative N2O emission was 0.66 kg/hm2. Compared with the Opt mode, the cumulative ammonia volatilization and N2O emissions in OptI mode were respectively decreased by 11.8% and 16.7%, although they are not significant. The ammonia volatilization rate and soil temperature showed a significant positive correlation, while soil moisture did not. Nitrous oxide emission was significantly and positively correlated to soil moisture, but the soil temperature was not.[Conclusions]The optimized nitrogen application treatment could significantly reduce the ammonia volatilization and nitrous oxide emission compared with the farmers' practice. The addition of urease inhibitor does not significantly reduce ammonia volatilization and nitrous oxide. Soil temperature increases ammonia volatilization rate and soil moisture increases nitrite oxide emission flux. Therefore, optimizing nitrogen fertilization mode should be considered firstly for the reduction of nitrogen fertilizer loss in the tested potato field.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号