首页> 中国专利> 一种跨流程高契合度耦合低能耗高氮制取工艺

一种跨流程高契合度耦合低能耗高氮制取工艺

摘要

本发明公开一种跨流程高契合度耦合低能耗高氮制取工艺,所述工艺所需装置包括制氧装置和制氮装置。本发明将两个流程耦合,把制氮装置的污氮气A引入制氧装置,由于该污氮气A中氧组分含量高,引入制氧装置中混入过滤后的原料空气(也可引出部分污氮气A作为制氧装置的交替使用的分子筛吸附器的再生气),可提高原料空气中氧组分含量,从而实现制氧装置以更低能耗制取更多氧气产品;把制氧装置的污氮气B引入制氮装置,由于污氮气B中氮组分含量高,引入制氮装置,污氮气B膨胀制取制氮装置所需冷量后引入精馏塔II精馏,可实现制氮装置以更低能耗制取更多氮气产品。

著录项

  • 公开/公告号CN114812097A

    专利类型发明专利

  • 公开/公告日2022-07-29

    原文格式PDF

  • 申请/专利权人 杭州特盈能源技术发展有限公司;

    申请/专利号CN202210432291.6

  • 发明设计人 何森林;杜晟;韦霆;

    申请日2022-04-22

  • 分类号F25J3/04;

  • 代理机构杭州奥创知识产权代理有限公司;

  • 代理人赵梅

  • 地址 310012 浙江省杭州市西湖区五洲国际商业中心1幢913室

  • 入库时间 2023-06-19 16:08:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-29

    公开

    发明专利申请公布

说明书

技术领域

本发明涉及空分技术领域,具体涉及一种跨流程高契合度耦合低能耗高氮制取工艺。

背景技术

对于空分装置生产的产品如氧气、氮气、液氧、液氮、液氩等,不同客户对产品种类、压力、纯度及流量的需求是不同的。比如钢铁行业、水泥窑炉、燃气/燃煤锅炉需要氧气助燃以提高燃料利用率,提高产品产量及质量,而对空气分离出来的其他物料如氮气、污氮气利用较少,一般用作冷却水冷却、纯化系统再生后放空至大气;对于电子行业、锂电池行业及高端制造业等领域大多需要利用高纯度压力氮气进行氮气保护,以提高电子产品的质量和性能,大量的富氧空气会被当做废气白白放空至大气中。如何结合不同的应用场景组织流程,优化设计以减少高品质气体的放散,以达到提高空分装置产品产量,降低装置整体能耗,是空分领域亟待解决的问题。

发明内容

本发明的目的是提供一种跨流程高契合度耦合低能耗高氮制取工艺,以解决现有技术的不足。

本发明采用以下技术方案:

一种跨流程高契合度耦合低能耗高氮制取工艺,所述工艺所需装置包括制氧装置和制氮装置;

制氧装置为制备纯度为90v%以上氧气或液氧产品的制氧装置;

制氮装置包括过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器、电加热器、主换热器、精馏塔I、主冷凝蒸发器I、过冷器I、精馏塔II、主冷凝蒸发器II、液氮泵、过冷器II、膨胀机、污氮气增压机、污氮气增压机后水冷却器;

过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器、电加热器、膨胀机增压端、膨胀机增压后水冷却器、污氮气增压机、污氮气增压机后水冷却器设于冷箱外,主换热器、精馏塔I、主冷凝蒸发器I、过冷器I、精馏塔II、主冷凝蒸发器II、液氮泵、过冷器II、膨胀机设于冷箱内,主冷凝蒸发器I设于精馏塔I之上,主冷凝蒸发器II设于精馏塔II之上;

过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器和主换热器依次连接,主换热器的完全冷却出口和精馏塔I底部的空气进口连接;

制氧装置的污氮气B出口分别和制氧装置的电加热器、污氮气增压机连接,污氮气增压机和污氮气增压机后水冷却器连接,污氮气增压机后水冷却器和膨胀机增压端连接,膨胀机增压端和膨胀机增压后水冷却器连接,膨胀机增压后水冷却器和主换热器连接,主换热器的部分冷却出口和膨胀机连接,膨胀机和精馏塔II连接;

精馏塔I底部的液空出口和过冷器I连接,过冷器I和主冷凝蒸发器I连接,过冷器I和主冷凝蒸发器I的连接管路上设有节流阀,主冷凝蒸发器I富氧空气出口和精馏塔II连接;主冷凝蒸发器I液空出口和主冷凝蒸发器II连接,主冷凝蒸发器I液空出口和主冷凝蒸发器II的连接管路上设有节流阀;

精馏塔I下部的污液氮出口和过冷器I连接,过冷器I和精馏塔II连接,过冷器I和精馏塔II的连接管路上设有节流阀;

精馏塔I顶部的压力氮气出口分别和主换热器、主冷凝蒸发器I连接,主换热器连至外部高纯度压力氮气供用户管网;主冷凝蒸发器I的液氮出口和精馏塔I顶部连接;

精馏塔II底部的富氧液空出口和过冷器II连接,过冷器II和主冷凝蒸发器II连接,过冷器II和主冷凝蒸发器II的连接管路上设有节流阀;主冷凝蒸发器II的污氮气A出口和过冷器II连接,过冷器II和过冷器I连接,过冷器I和主换热器连接,主换热器分别和制氧装置、电加热器连接,电加热器和交替使用的分子筛吸附器连接;

精馏塔II顶部的氮气出口和主冷凝蒸发器II连接,主冷凝蒸发器II的液氮出口分别和精馏塔II顶部、液氮泵连接,液氮泵分别和外部液氮产品储罐、过冷器II连接,过冷器II和精馏塔I顶部连接;

所述工艺包括如下步骤:

步骤一、将原料空气经过滤器过滤掉灰尘和机械杂质后,进入空气压缩机将空气压缩到设定压力;之后经空气预冷系统预冷后进入交替使用的分子筛吸附器中纯化;

步骤二、纯化后的空气一小部分用于仪表空气,其余部分进入主换热器冷却至饱和温度并带有一定的含湿后进入精馏塔I底部参与精馏;

制氧装置出冷箱的污氮气B引入制氮装置,也可引出部分污氮气B由制氧装置的电加热器加热后引入制氧装置的交替使用的分子筛吸附器作为再生气;引入制氮装置的污氮气B先经污氮气增压机增压、污氮气增压机后水冷却器冷却后引入膨胀机增压端增压,再经膨胀机增压后水冷却器冷却后引入主换热器部分冷却,后引入膨胀机膨胀制取制氮装置所需冷量,膨胀后污氮气B引入精馏塔II中参与精馏;

步骤三、空气经精馏塔I精馏后分离为液空、污液氮和压力氮气,液空经过冷器I过冷、节流阀节流后进入主冷凝蒸发器I和压力氮气换热,液空被汽化为富氧空气,富氧空气引入精馏塔II底部参与精馏,引出部分液空经节流阀节流后引入主冷凝蒸发器II;污液氮经过冷器I过冷、节流阀节流后进入精馏塔II参与精馏;部分压力氮气引入主冷凝蒸发器I和液空换热,压力氮气被液化为液氮,液氮引入精馏塔I顶部作为回流液;其余压力氮气经主换热器复热后出冷箱作为高纯度压力氮气产品;

步骤四、富氧空气、污液氮、膨胀后污氮气B经精馏塔II精馏后分离为富氧液空和氮气,富氧液空经过冷器II过冷、节流阀节流后进入主冷凝蒸发器II和氮气换热,富氧液空被汽化为污氮气A,污氮气A依次经过冷器II、过冷器I和主换热器复热后出冷箱,部分作为再生气由电加热器加热后引入交替使用的分子筛吸附器,其余引入制氧装置,引入制氧装置的污氮气A和制氧装置经过滤器过滤后的原料空气混合,也可以引出部分污氮气A由制氧装置的电加热器加热后引入制氧装置的交替使用的分子筛吸附器作为再生气;氮气引入主冷凝蒸发器II和富氧液空换热,氮气被液化为液氮,部分液氮引入精馏塔II顶部作为回流液,其余液氮经液氮泵增压后一部分出冷箱作为液氮产品,另一部分经过冷器II复热后引入精馏塔I顶部作为回流液。

进一步地,空气压缩机为透平空气压缩机。

进一步地,膨胀机为增压透平膨胀机。

进一步地,步骤一空气经空气压缩机压缩到0.6-1.0MPaG。

进一步地,步骤一空气经空气预冷系统预冷至5-15℃。

进一步地,步骤三高纯度压力氮气产品纯度为≤3ppmO

本发明的有益效果:

1、制氮装置主要是利用空气中的氮组分,制氮装置把氮组分提取后的污氮气A中氧组分含量比较高,制氧装置主要是利用空气中的氧组份和氮组分,制氧装置把氧组分、氮组分提取后的污氮气B中氮组分含量比较高,污氮气A、污氮气B未耦合前都是用于再生气或放空;本发明将两个流程耦合,把制氮装置的污氮气A引入制氧装置,由于该污氮气A中氧组分含量高,引入制氧装置中混入过滤后的原料空气(也可引出部分污氮气A作为制氧装置的交替使用的分子筛吸附器的再生气),可提高原料空气中氧组分含量,从而实现制氧装置以更低能耗制取更多氧气产品;把制氧装置的污氮气B引入制氮装置,由于污氮气B中氮组分含量高,引入制氮装置,污氮气B膨胀制取制氮装置所需冷量后引入精馏塔II精馏,可实现制氮装置以更低能耗制取更多氮气产品。

2、本发明制氮装置采用双塔精馏,增加精馏塔II用于分离来自精馏塔I分离出的富氧空气、污液氮及膨胀后污氮气B中的氮,分离出的氮气经主冷凝蒸发器II冷凝为液氮,部分液氮作为精馏塔II的回流液,部分液氮经液氮泵增压、过冷器II复热后引入精馏塔I作为回流液,从而分离出更多的氮产品。本发明制备的氮气纯度高(≤3ppmO

3、本发明制氮装置设置了双过冷器,增加过冷器II,用于过冷精馏塔II底部的富氧液空,以回收返流污氮气A及增压后过冷液氮的部分冷量转移至精馏塔II,减少富氧液空节流后汽化率,增大精馏塔II回流液氮量,提高精馏塔II氮组分的提取率,降低装置能耗。

4、本发明制氮装置采用双主冷凝蒸发器,设置主冷凝蒸发器II,因主冷凝蒸发器I中液空中含氧量较精馏塔II富氧液空含氧量低,在精馏塔II精馏压力不变及满足主冷凝蒸发器I换热的情况下,可以降低精馏塔I的压力,从而降低进入精馏塔I的空气压力,进而降低装置能耗。

5、本发明制氮装置从精馏塔I中引一股污液氮经过冷器I过冷、节流阀节流后引入精馏塔II参与精馏,将冷量从精馏塔I转移至精馏塔II,降低了精馏塔I的负荷,同时改善了精馏塔II的回流量,提高了精馏塔II氮组分的提取率,使负荷分配更合理,也提高了装置整体氮的提取率,降低装置能耗。

6、本发明制氮装置主冷凝蒸发器II中氮气冷凝后的部分液氮经液氮泵增压后再经过冷器II复热后引入精馏塔I作为回流液,一方面利用液氮泵增压提高进入精馏塔I液氮的压力,降低了装置的能耗,另一方面利用过冷器II回收该液氮部分冷量,将冷量转移至精馏塔II,减少富氧液空节流后汽化率,增大精馏塔II回流液氮量,提高精馏塔II氮组分的提取率,从而进一步降低装置能耗。

附图说明

图1为本发明工艺所需装置的结构示意图。

图2为制氧装置的结构示意图。

具体实施方式

下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。

一种跨流程高契合度耦合低能耗高氮制取工艺,所述工艺所需装置如图1所示,包括制氧装置15和制氮装置。

制氧装置15为空分领域常规深冷法制备纯度为90v%以上氧气或液氧产品的制氧装置15。

在一些实施例中可采用如图2所示的制氧装置15,包括过滤器151、透平空气压缩机152、空气预冷系统153、交替使用的分子筛吸附器154、电加热器155、主换热器156、精馏塔下塔157、主冷凝蒸发器158、精馏塔上塔159、过冷器1510、增压透平膨胀机1511;空气预冷系统153为空气预冷机组或空冷塔/水冷塔;

过滤器151、透平空气压缩机152、空气预冷系统153、交替使用的分子筛吸附器154、电加热器155、增压透平膨胀机增压端15111、增压透平膨胀机增压后水冷却器15112设于冷箱外,主换热器156、精馏塔下塔157、主冷凝蒸发器158、精馏塔上塔159、过冷器1510、增压透平膨胀机1511设于冷箱内,主冷凝蒸发器158设在精馏塔下塔157和精馏塔上塔159之间;

过滤器151、透平空气压缩机152、空气预冷系统153、交替使用的分子筛吸附器154依次连接;

制氮装置的污氮气A出口分别连至过滤器151和透平空气压缩机152的连接管道、电加热器155,电加热器155和交替使用的分子筛吸附器154连接;

交替使用的分子筛吸附器154分别和主换热器156、增压透平膨胀机增压端15111连接,主换热器156的完全冷却出口和精馏塔下塔157底部的空气进口连接;增压透平膨胀机增压端15111和增压透平膨胀机增压后水冷却器15112连接,增压透平膨胀机增压后水冷却器15112和主换热器156连接,主换热器156的部分冷却出口和增压透平膨胀机1511连接,增压透平膨胀机1511和精馏塔上塔159连接;

精馏塔下塔157底部的液空出口和过冷器1510连接,过冷器1510和精馏塔上塔159连接,过冷器1510和精馏塔上塔159的连接管路上设有节流阀;

精馏塔下塔157顶部的压力氮气出口和主冷凝蒸发器158连接,主冷凝蒸发器158的液氮出口分别和精馏塔下塔157顶部、过冷器1510连接,过冷器1510和精馏塔上塔159顶部连接,过冷器1510和精馏塔上塔159顶部的连接管路上设有节流阀;

精馏塔上塔159底部的氧气出口和主换热器156连接,主换热器156连至外部氧气供用户管网;

精馏塔上塔159上部的污氮气B出口和过冷器1510连接,过冷器1510和主换热器156连接,主换热器156分别和电加热器155、制氮装置的污氮气增压机16连接;

精馏塔上塔159顶部的氮气出口和过冷器1510连接,过冷器1510和主换热器156连接,主换热器156连至外部氮气供用户管网。

所述制氧装置15制取氧气产品和氮气产品时,包括如下步骤:

步骤一、将原料空气经过滤器151过滤掉灰尘和机械杂质后,进入透平空气压缩机152将空气压缩到0.45-0.55MPaG;之后经空气预冷系统153预冷至5-15℃后进入交替使用的分子筛吸附器154中纯化,去除水分、CO

将制氮装置出冷箱的污氮气A(氧组分52v%O

步骤二、纯化后的空气一小部分用于仪表空气(图2中未示意出),其余部分分成两股,一股进入主换热器156冷却至饱和温度并带有一定的含湿后进入精馏塔下塔157底部参与精馏;另一股引入增压透平膨胀机增压端15111增压并经增压透平膨胀机增压后水冷却器14112冷却后引入主换热器156部分冷却,后引入增压透平膨胀机1511膨胀制取制氧装置15所需冷量,膨胀后空气引入精馏塔上塔159参与精馏;

步骤三、空气经精馏塔下塔157精馏为液空和压力氮气,液空经过冷器1510过冷、节流阀节流后引入精馏塔上塔159参与精馏,压力氮气引入主冷凝蒸发器158和液氧换热,压力氮气被液化为液氮,液氮一部分引入精馏塔下塔157顶部作为回流液,另一部分经过冷器1510过冷、节流阀节流后引入精馏塔上塔159顶部作为回流液;

步骤四、液空和膨胀后空气经精馏塔上塔159精馏为液氧、污氮气B(氮组分90v%N

制氮装置包括过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4、电加热器5、主换热器6、精馏塔I7、主冷凝蒸发器I8、过冷器I11、精馏塔II9、主冷凝蒸发器II10、液氮泵13、过冷器II12、膨胀机14、污氮气增压机16、污氮气增压机后水冷却器17;优选地,所述空气压缩机2为透平空气压缩机,所述膨胀机14为增压透平膨胀机;空气预冷系统3为空气预冷机组或空冷塔/水冷塔;

过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4、电加热器5、膨胀机增压端141、膨胀机增压后水冷却器142、污氮气增压机16、污氮气增压机后水冷却器17设于冷箱外,主换热器6、精馏塔I7、主冷凝蒸发器I8、过冷器I11、精馏塔II9、主冷凝蒸发器II10、液氮泵13、过冷器II12、膨胀机14设于冷箱内,主冷凝蒸发器I8设于精馏塔I7之上,主冷凝蒸发器II10设于精馏塔II9之上;

过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4和主换热器6依次连接,主换热器6的完全冷却出口和精馏塔I7底部的空气进口连接;

制氧装置15的污氮气B出口分别和制氧装置的电加热器155、污氮气增压机16连接,污氮气增压机16和污氮气增压机后水冷却器17连接,污氮气增压机后水冷却器17和膨胀机增压端141连接,膨胀机增压端141和膨胀机增压后水冷却器142连接,膨胀机增压后水冷却器142和主换热器6连接,主换热器6的部分冷却出口和膨胀机14连接,膨胀机14和精馏塔II9连接;

精馏塔I7底部的液空出口和过冷器I11连接,过冷器I11和主冷凝蒸发器I8连接,过冷器I11和主冷凝蒸发器I8的连接管路上设有节流阀,主冷凝蒸发器I8富氧空气出口和精馏塔II9连接;主冷凝蒸发器I8液空出口和主冷凝蒸发器II10连接,主冷凝蒸发器I8液空出口和主冷凝蒸发器II10的连接管路上设有节流阀;

精馏塔I7下部的污液氮出口和过冷器I11连接,过冷器I11和精馏塔II9连接,过冷器I11和精馏塔II9的连接管路上设有节流阀;

精馏塔I7顶部的压力氮气出口分别和主换热器6、主冷凝蒸发器I8连接,主换热器6连至外部高纯度压力氮气供用户管网;主冷凝蒸发器I8的液氮出口和精馏塔I7顶部连接;

精馏塔II9底部的富氧液空出口和过冷器II12连接,过冷器II12和主冷凝蒸发器II10连接,过冷器II12和主冷凝蒸发器II10的连接管路上设有节流阀;主冷凝蒸发器II10的污氮气A出口和过冷器II12连接,过冷器II12和过冷器I11连接,过冷器I11和主换热器6连接,主换热器6分别和制氧装置15、电加热器5连接,电加热器5和交替使用的分子筛吸附器4连接;

精馏塔II9顶部的氮气出口和主冷凝蒸发器II10连接,主冷凝蒸发器II10的液氮出口分别和精馏塔II9顶部、液氮泵13连接,液氮泵13分别和外部液氮产品储罐、过冷器II12连接,过冷器II12和精馏塔I7顶部连接。

上述各部件的功能如下:

过滤器1,用于过滤原料空气中的灰尘和机械杂质;

空气压缩机2,用于将过滤后的空气压缩到设定压力;

空气预冷系统3,用于将过滤、压缩后的空气预冷;

交替使用的分子筛吸附器4,用于将过滤、压缩、预冷后的空气纯化,去除水分、CO

电加热器5,用于加热污氮气A以再生交替使用的分子筛吸附器4;

主换热器6,用于将纯化后的空气冷却,将经膨胀机增压后水冷却器142冷却后的污氮气B部分冷却,将压力氮气、污氮气A复热;

精馏塔I7,用于将空气精馏而分离为压力氮气和液空;

主冷凝蒸发器I8,用于液空和压力氮气换热,液空被汽化为富氧空气,压力氮气被液化为液氮;

过冷器I11,用于将液空、污液氮过冷,用于将污氮气A复热;

精馏塔II9,用于将富氧空气、污液氮、膨胀后污氮气B精馏而分离为富氧液空和氮气;

主冷凝蒸发器II10,用于富氧液空和氮气换热,富氧液空被汽化为污氮气A,氮气被液化为液氮;

液氮泵13,用于将主冷凝蒸发器II10的部分液氮增压;

过冷器II12,用于将富氧液空过冷,将经液氮泵13增压后的部分液氮、污氮气A复热;

膨胀机14,用于将部分冷却后的污氮气B膨胀,制取制氮装置所需冷量;

污氮气增压机16,用于将制氧装置15的污氮气B增压;

污氮气增压机后水冷却器17,用于将经污氮气增压机16增压后的污氮气B冷却。

所述跨流程高契合度耦合低能耗高氮制取工艺包括如下步骤:

步骤一、将原料空气经过滤器1过滤掉灰尘和机械杂质后,进入空气压缩机2将空气压缩到0.6-1.0MPaG;之后经空气预冷系统3预冷至5-15℃后进入交替使用的分子筛吸附器4中纯化,去除水分、CO

步骤二、纯化后的空气一小部分用于仪表空气(图1中未示意出),其余部分进入主换热器6冷却至饱和温度并带有一定的含湿后进入精馏塔I7底部参与精馏;

制氧装置15出冷箱的污氮气B(氮组分90v%N

步骤三、空气经精馏塔I7精馏后分离为液空、污液氮(其中,氧组分33v%-40v%O

步骤四、富氧空气、污液氮、膨胀后污氮气B经精馏塔II9精馏后分离为富氧液空和氮气(≤3ppmO

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号