首页> 中国专利> 一种干涉型光纤水听器相位噪声测试系统及方法

一种干涉型光纤水听器相位噪声测试系统及方法

摘要

本发明公开了一种干涉型光纤水听器相位噪声测试系统及方法,设计了含有光纤相位控制器的时分复用阵列噪声测试光学系统及光电信号处理系统,其通过驱动相位控制器使阵列干涉信号的初相位扫过0~2π,同步测试对应初相位处的相位噪声并取短时平均,通过一个初相位变化周期的相位噪声测试结果得到待测远程系统在全状态下的强度噪声到相位噪声转化结果。可有效消除初相位变化带来的噪声测试误差,缩短测试时间,并可同步获得待测系统光强度噪声及噪声转化特性,尤其适用于低信噪比的远程大规模光纤水听器复用阵列系统相位本底噪声测试及性能评估。

著录项

说明书

技术领域

本发明涉及相位噪声测试技术领域,具体是一种干涉型光纤水听器相位噪声测试系统及方法。

背景技术

光纤水听器是以光纤作为光学传感及传输介质的水声传感器,可用于海洋声场与地震场探测,目前常规的光纤水听器为光纤干涉型结构。通过与现有的光纤通信技术结合,光纤水听器可以方便地组建各种水下光纤传感及传输网络,有效提升阵列规模及远程传输距离,为解决海洋水声探测和海底能源勘探等大范围应用问题提供理想的技术途径。

随着光纤水听器阵列规模的不断扩大,基元数从几百上升到几万,传输距离也逐步扩展至几百甚至上千公里,系统光学损耗急剧增加,需要在不同位置加入不同形式的光放大器以补偿系统损耗,如光功率放大器、光在线放大器以及光前置放大器等。与此同时,多级光放大器的加入也会带来放大的自发辐射噪声,该噪声为宽带的光强度随机扰动,使水听器的光信噪比下降,并最终导致水听器系统的相位噪声本底的整体抬升。

在光纤水听器系统中,假设信号光功率为P

在仅考虑水听器系统噪声的情况下,令相位信号

上式中V为干涉仪的可见度,理想条件下取值为1,R为光电转换响应率;

在一般的光纤水听器短程噪声测试系统中,P

上式中

图1中,初相位在直线上升的过程中,相位噪声在-87dB~-94dB之间变化,波动幅度约7dB。该结果表明强度到相位噪声的转化是非线性的,且与水听器系统的初相位密切相关。因此,强度到相位噪声转化随初相位变化这一特殊规律给低信噪比条件下的光纤水听器系统相位噪声准确测试带来困难。

现有的光纤水听器本底噪声测试方案均未考虑

发明内容

针对上述现有技术中的不足,本发明提供一种干涉型光纤水听器相位噪声测试系统及方法,可有效消除初相位变化带来的噪声测试误差,缩短测试时间,并可同步获得待测系统光强度噪声及噪声转化特性,尤其适用于低信噪比的远程大规模光纤水听器复用阵列系统相位本底噪声测试及性能评估。

为实现上述目的,本发明提供一种干涉型光纤水听器相位噪声测试系统,包括:

信号发射单元,用于输出待测系统的单脉冲信号;

远程传输单元,包括下行传输光纤、上行传输光纤及光放大器,所述下行传输光纤的入射端与所述信号发射单元相连,用于远程传输所述单脉冲信号;

干涉单元,包括输入端、输出端与相位控制器,所述干涉单元的输入端与所述下行传输光纤的出射端相连,用于将所述单脉冲信号转化为单脉冲干涉信号后输出;

时分复用单元,包括输入端与输出端,所述时分复用单元的输入端与所述干涉单元的输出端相连,所述时分复用单元的输出端与所述上行传输光纤的入射端相连,用于将所述单脉冲干涉信号转化为时分复用干涉脉冲信号后输出;

信号接收单元,与所述上行传输光纤的出射端相连,用于接收所述时分复用干涉脉冲信号并对其进行解调,得到所述待测系统的相位噪声;

控制单元,与所述相位控制器电性相连,以用于对所述单脉冲干涉信号的初相位主动控制。

在其中一个实施例中,所述干涉单元为迈克尔逊干涉结构,包括光纤耦合器、第一单模光纤、第二单模光纤、第一法拉第镜、第二法拉第镜与所述相位控制器;

所述光纤耦合器具有输入端口、第一输出端口、第二输出端口与第三输出端口,所述光纤耦合器的输入端口即为所述干涉单元的输入端,且所述光纤耦合器的第三输出端口即为所述干涉单元的输出端;

所述光纤耦合器的第一输出端口通过所述第一单模光纤与所述第一法拉第镜相连,所述光纤耦合器的第二输出端口通过所述第二单模光纤与所述第二法拉第镜相连;

所述相位控制器设在所述第一单模光纤上。

在其中一个实施例中,所述相位控制器为柱形结构的压电陶瓷环,且所述压电陶瓷环与所述控制单元电性相连,以使得所述压电陶瓷环在电压信号的作用下伸缩;

部分所述第一单模光纤沿周向紧密缠绕并整齐排列在所述压电陶瓷环上,以使得缠绕在所述压电陶瓷环上的第一单模光纤随着所述压电陶瓷环的伸缩发生长度变化,以改变所述单脉冲干涉信号的相位差。

在其中一个实施例中,所述时分复用单元包括N-1个分束耦合器、N-1个合束耦合器,其中,N为时分复用数,且N为大于1的自然数,所述分束耦合器、所述合束耦合器均具有公共端口、小耦合比端口与大耦合比端口;

第a个分束耦合器的公共端口与第a-1个分束耦合器的大耦合比端口通过延迟光纤相连,第a个合束耦合器的公共端口与第a-1个合束耦合器的大耦合比端口相连,其中,a=2~N-1;

第N-1个分束耦合器的大耦合比端口与第N-1个合束耦合器的大耦合比端口通过延迟光纤相连,第1个分束耦合器的公共端口即为所述时分复用单元的输入端,第1个合束耦合器的公共端口即为所述时分复用单元的输出端;

第b个分束耦合器的小耦合比端口与第b个合束耦合器的小耦合比端口通过连接光纤相连,其中,b=1~N-1。

在其中一个实施例中,还包括真空隔离罐,所述干涉单元、所述时分复用单元均设在所述真空隔离罐内。

在其中一个实施例中,所述信号接收单元包括:

光电探测器,包括输入端与输出端,所述光电探测器的输入端口与所述上行传输光纤的出射端相连,用于将时分复用干涉脉冲信号转换为时分复用干涉电信号;

模数转换器,包括输入端与输出端,所述模数转换器的输入端与所述光电探测器的输出端相连,用于将时分复用干涉电信号由模拟信号转换为数字信号;

相位噪声解调器,包括输入端与输出端,所述相位噪声解调器的输入端与所述模数转换器的输出端相连,用于对数字信号进行解调,得到所述待测系统的相位噪声。

在其中一个实施例中,所述控制单元包括:

模数转换器,与所述相位控制器电联,以用于为所述相位控制器施加电压信号;

控制显示模块,与所述数模转换器、所述相位噪声解调器电联,用于控制所述数模转换器的输出电压,得到待测系统在初相位全变化过程下的相位噪声水平。

为实现上述目的,本发明还提供一种干涉型光纤水听器相位噪声测试,采用上述干涉型光纤水听器相位噪声测试系统,具体包括如下步骤:

步骤1,从小到大改变相位控制器所加电压,并逐点采集时分复用干涉脉冲信号的干涉光强I(t);

步骤2,获取干涉光强I(t)在一个变化周期内的最大值I

V

式中,V

步骤3,逐步改变相位控制器所加电压V

在每改变一次电压V

完成M次噪声采集后,对M×K秒的噪声数据进行平均,即可获得待测系统在初相位全变化过程下的相位噪声水平:

式中,

针对现有技术中测试方法存在的问题,本发明提供的一种干涉型光纤水听器相位噪声测试系统及方法,其设计了含有光纤相位控制器的时分复用阵列噪声测试光学系统及光电信号处理系统,该系统及方法的具有如下有益技术效果:

(1)采取

(2)

(3)设计了干涉与复用光路分离的时分复用噪声测试阵列,仅需1个由压电陶瓷绕制的相位控制器即可实现时分复用阵列信号的

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。

图1为现有技术中光纤水听器相位噪声随初相位变化示意图;

图2为本发明实施例中干涉型光纤水听器相位噪声测试系统的结构示意图;

图3为本发明实施例中干涉单元与时分复用单元的结构示意图;

图4为本发明实施例中干涉型光纤水听器相位噪声测试方法的流程示意图。

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。

另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是物理连接或无线通信连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。

本实施例公开的一种干涉型光纤水听器相位噪声测试系统,应用于低信噪比条件下远程大规模光纤水听器阵列光强度到相位噪声转化特性及系统相位本底噪声的全面测试,包括信号发射单元、远程传输单元、干涉单元、时分复用单元、信号接收单元与控制单元。其中,信号发射单元用于输出待测系统的单脉冲信号;远程传输单元包括下行传输光纤的入射端与信号发射单元相连,用于远程传输单脉冲信号;干涉单元包括输入端、输出端与相位控制器,干涉单元的输入端与下行传输光纤的出射端相连,用于将单脉冲信号转化为单脉冲干涉信号后输出;时分复用单元包括输入端与输出端,时分复用单元的输入端与干涉单元的输出端相连,时分复用单元的输出端与上行传输光纤的入射端相连,用于将单脉冲干涉信号转化为时分复用干涉脉冲信号后输出;信号接收单元与上行传输光纤的出射端相连,用于接收时分复用干涉脉冲信号并对其进行解调,得到待测系统的相位噪声;控制单元与相位控制器电性相连,以用于对单脉冲干涉信号的初相位主动控制。

本实施例中,信号发射单元包括作为光源的窄线宽激光器与声光调制器AOM。远程传输单元由下行传输光纤与上行传输光纤组成,且下行传输光纤上具有掺铒光纤功率放大器EDFA-BA与掺铒光纤线路放大器EDFA-LA,上行传输光纤上具有掺铒光纤线路放大器EDFA-LA与掺铒光纤前置放大器EDFA-PA。信号接收单元包括光电探测器(Detector,D)、模数转换器(analog to digital converter,A/D)与相位噪声解调器,控制单元包括数模转换器(digital to analog converter,D/A)与控制显示模块。其中,光电探测器包括输入端与输出端,光电探测器的输入端口与上行传输光纤的出射端相连,用于将时分复用干涉脉冲信号转换为时分复用干涉电信号;模数转换器包括输入端与输出端,模数转换器的输入端与光电探测器的输出端相连,用于将时分复用干涉电信号由模拟信号转换为数字信号;相位噪声解调器包括输入端与输出端,相位噪声解调器的输入端与模数转换器的输出端相连,用于对数字信号进行解调,得到待测系统的相位噪声。数模转换器与相位控制器电联,以用于为相位控制器施加电压信号;控制显示模块与声光调制器、模数转换器。数模转换器、相位噪声解调器电联,用于控制模数转换器的输出电压,得到待测系统在初相位全变化过程下的相位噪声水平。

参考图2,该干涉型光纤水听器相位噪声测试系统由三部分组成:

(1)主动初相位控制时分复用噪声测试阵列单元,具体包括本实施例中的干涉单元与时分复用单元;

(2)主动初相位控制时分复用阵列噪声测试光电信号处理单元,具体包括本实施例中的信号发射单元、信号接收单元与控制单元;

(3)待测远程传输及光放大单元,具体为本实施例中的远程传输单元。

参考图3,为上述主动初相位控制时分复用噪声测试阵列单元,即干涉单元与时分复用单元的结构示意图。

本实施例中,干涉单元为迈克尔逊干涉结构,包括第一单模光纤隔离器ISO

其中,光纤耦合器具有输入端口、第一输出端口、第二输出端口与第三输出端口,光纤耦合器的输入端口即为干涉单元的输入端,其通过第一单模光纤隔离器ISO

具体地,相位控制器设在第一单模光纤上。本实施例中,相位控制器的主体为一个直径约20mm,高约5mm的圆柱形结构的压电陶瓷环PZT。压电陶瓷环PZT采用轴向加电压方式,轴向正(+)、负(-)两极分别焊接电线并引出至控制电信号输入端接口,即数模转换器D/A。第二单模光纤L

本实施例中,时分复用单元包括N-1个分束耦合器C

(1)C

(2)C

(3)C

其中,C

需要注意的是上述,干涉单元、时分复用单元均设在真空隔离罐内。真空隔离罐外部有1个光纤穿仓密封件(含2根光纤,作为光接口)、1个电穿仓件密封件(含2根电线,作为电接口)以及1个真空抽气阀。通过将真空隔离罐抽真空到-0.075Mpa~-0.085Mpa之间以实现良好声/振动屏蔽效果,在此条件下测试系统测得的相位本底噪声将主要由光纤水听器系统自噪声引入。

上述干涉型光纤水听器相位噪声测试系统的工作过程为:

光纤水听器用窄线宽激光器输出连续光经声光调制器AOM斩波为脉宽τ

基于上述干涉型光纤水听器相位噪声测试系统,本实施例还公开了一种干涉型光纤水听器相位噪声测试方法,参考图4,具体包括如下步骤:

步骤1,控制D/A输出,从小到大改变相位控制器所加电压,并通过A/D逐点采集时分复用干涉脉冲信号的干涉光强I(t);

步骤2,获取干涉光强I(t)在一个变化周期内的最大值I

V

式中,V

步骤3,逐步改变相位控制器所加电压V

在每改变一次电压V

完成M次噪声采集后,对M×K秒的噪声数据进行平均,即可获得待测系统在初相位全变化过程下的相位噪声水平:

式中,

考虑到D/A输出控制电压及等待F-PK稳定的时间均很短,以上步骤1-3流程完成一次测试的时间约等于M×K秒。

综上所述,本实施例提出了一种包含初相位控制器的光纤水听器时分复用测试阵列结构及相位噪声测试方法。通过主动控制并改变初相位控制器的电压,使测试干涉仪的初相位在0~2π之间变化,并同步采集和解调每个初相位处对应的待测水听器系统相位噪声。完成一个周期测试后即可获得全初相位变化条件下待测系统的相位噪声及平均噪声水平。该测试方法可有效消除初相位变化带来的噪声测试误差,缩短测试时间,并可同步获得待测系统光强度噪声及噪声转化特性。尤其适用于低信噪比的远程大规模光纤水听器复用阵列系统相位本底噪声测试及性能评估。

以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号