首页> 中国专利> 来自多极引线的起搏识别健康基质与不健康基质

来自多极引线的起搏识别健康基质与不健康基质

摘要

医疗设备系统执行用于通过植入的引线确定疤痕组织的存在的方法,该植入的引线具有用于心脏起搏和感测的电极。感测模块采用电极感测心脏活动以产生单极电描记图(EGM)波形。处理器接收单极EGM波形并提取表示电极处的心脏活动的两个或两个以上特征。基于被提取的特征中的至少两个特征指示疤痕组织,识别在第一电极的部位处的疤痕组织。

著录项

  • 公开/公告号CN113057643A

    专利类型发明专利

  • 公开/公告日2021-07-02

    原文格式PDF

  • 申请/专利权人 美敦力公司;

    申请/专利号CN202110265543.6

  • 发明设计人 S·戈什;

    申请日2014-07-22

  • 分类号A61B5/318(20210101);A61B5/287(20210101);

  • 代理机构31100 上海专利商标事务所有限公司;

  • 代理人钱慰民

  • 地址 美国明尼苏达州

  • 入库时间 2023-06-19 11:44:10

说明书

本申请是国际申请日为2014年7月22日,国际申请号为PCT/US2014/047583,进入中国国家阶段申请号为201480041702.2,题为“标识健康基质与不健康基质以从多极引线起搏”的发明专利申请的分案申请。

技术领域

本公开一般涉及识别健康心脏基质与不健康心脏基质的存在,并且尤其涉及识别用于接收心脏起搏的基质的系统和方法。

背景技术

心肌缺血或心肌梗塞可在心肌基质中产生将对心脏起搏反应迟钝的疤痕组织的区域。如果具有心肌疤痕组织的患者需要心脏起搏,则在定位起搏电极时优选避免疤痕组织的位置。然而,在不执行成像程序(诸如,磁共振成像(MRI))的情况下疤痕组织的位置可能是未知的,这些成像程序可能是昂贵的,需要导管插入或造影剂,并且在某些地理区域可能不容易获得。

心脏再同步治疗(CRT)是用作对心脏衰竭患者的治疗的一种类型的心脏起搏治疗,其中一个或多个心脏腔室被电刺激(起搏)以恢复或改善心脏腔室同步。实现来自CRT的积极的临床益处取决于若干治疗控制参数,这些治疗控制参数包括起搏部位(多个)的选择和在右心室和/或左心室中递送的起搏脉冲的相对计时(timing)。例如,避免心肌疤痕组织的CRT起搏部位的选择对实现临床益处是重要的。需要在不需要昂贵的成像技术的情况下用于识别接受CRT或其他起搏治疗的患者中的潜在起搏部位处的心肌疤痕组织与健康心肌基质的系统和方法。

发明内容

一般而言,本公开涉及用于确定疤痕组织的存在的技术。在一个实施例中,一种方法通过具有至少一个心脏起搏和感测电极的植入的引线确定疤痕组织的存在。用电极感测心脏活动以产生单极电描记图(EGM)波形。接收该单极EGM波形的医疗设备处理器从该单极EGM波形提取两个或更多个特征。基于被提取的特征中的至少两个特征指示疤痕组织,检测出在电极的部位处的疤痕组织。被提取的特征的示例包括单极EGM波形的峰值幅度的度量、单极EGM波形的Q波的负性(negativity)的度量、和单极EGM波形的分离度(fractionation)的度量。对识别疤痕组织的响应可包括:生成在电极部位处的所识别的疤痕组织的通知和/或自动地排除在疤痕组织部位处用于递送起搏治疗的电极。

在另一实施例中,用于确定疤痕组织的存在的医疗设备系统包括植入的引线、感测模块和处理器,其中该植入的引线具有用于心脏起搏和感测的电极,该感测模块用于采用电极来感测心脏活动以产生单极电描记图(EGM)波形,该处理器被配置成接收单极EGM波形并从表示电极处的心脏活动的单极EGM波形提取两个或两个以上特征。处理器被配置成基于被提取特征中的至少两个特征指示疤痕组织来识别在电极的部位处的疤痕组织。

本文描述了用于确定疤痕组织的存在的系统和方法的其他实施例和方面。在所附附图和以下说明中阐述了本公开的一个或多个方面的细节。根据说明和附图以及所附权利要求,其他特征、目的以及优点将显而易见。

附图说明

图1为其中可实现本文所公开的技术以向患者的心脏提供治疗的可植入医疗设备(IMD)系统的一个实施例的示意图。

图2是示出了IMD的一个示例配置的功能框图。

图3为根据一个实施例的用于检测心肌疤痕组织的方法的流程图。

图4为根据一个实施例的用于提取单极EGM信号特征以用于检测疤痕组织的方法的流程图。

图5为用于确定患者的心脏中疤痕组织的存在的外部系统的示意图。

图6是根据一个实施例的用于确定疤痕负担指标的方法的流程图。

具体实施方式

图1为其中可实现本文所公开的技术以向患者114的心脏112提供治疗的可植入医疗设备(IMD)系统100的一个实施例的示意图。系统100包括IMD 10,IMD 10耦合至携载多个电极的引线118、120、和122。IMD10被配置用于与编程器170双向通信。IMD16可以是,例如,可植入起搏器、或可植入复律器除颤器(ICD),其经由耦合到引线118、120、和122中的一根或多根的电极向心脏112提供电信号以用于对心脏112进行起搏、复律和除颤。IMD 10能够在一个或多个心脏腔室中递送起搏,并且在所示的实施例中,被配置用于使用引线118、120、和122在右心房(RA)126、右心室(RV)128、和左心室(LV)132中进行多腔室起搏和感测。

IMD 10使用RV尖端电极140和RV环形电极142来递送RV起搏脉冲和感测RV心脏内电描记图(EGM)信号。RV引线118被显示成携载线圈电极162,线圈电极162可用于递送高压复律或除颤冲击脉冲。IMD 10使用由多极冠状窦引线120携载的电极144感测LV EGM信号并且递送LV起搏脉冲,多极冠状窦引线120延伸穿过RA 126并且经由冠状窦进入心静脉130中。在一些实施例中,冠状窦引线120可包括沿着左心房(LA)136定位的用于感测左心房(LA)EGM信号和递送LA起搏脉冲的电极。

IMD 10使用RA引线122感测RA EGM信号和递送RA起搏脉冲,RA引线122携载尖端电极148和环形电极150。RA引线122被显示成携载线圈电极166,线圈电极166可沿着上腔静脉(SVC)定位以用于递送复律/除颤冲击。在其他实施例中,RV引线118携载RV线圈电极162和SVC线圈电极166两者。IMD16可检测心脏112的心律失常,诸如心室128和132的纤颤,并以电冲击脉冲形式向心脏112递送高压复律或除颤治疗。心脏腔室的起搏和感测通常使用起搏/感测电极140、142、144、148和150实现,然而,在一些实施例中,线圈电极162和/或166可用于感测和/或起搏电极向量。

虽然IMD 10被显示为在图1中的右胸植入位置,但是尤其是当IMD 10被具体化为ICD时,更典型的植入位置为左胸植入位置。在其他实施例中,IMD 10可被植入在腹部位置。

IMD 10包括用于执行归因于IMD 10的功能的内部电路。外壳160封围内部电路可以认识到,外壳160或外壳160的部分可被配置作为用于复律/除颤冲击递送的活动电极158,或用作用于单极起搏或采用由引线118、120和122携载的任何电极感测配置的中性电极。IMD 10包括连接器块134,连接器块134具有用于接收引线118、120、和122的近端引线连接器的连接器孔。经由包括在连接器块134中的各连接器和电馈通实现由引线118、120、和122携载的电极和IMD内部电路的电连接。

IMD 10被配置用于通过在一个或两个心室128和132中递送起搏脉冲来递送CRT以用于控制和改善心室同步。可使用所选的起搏向量递送LV起搏,该起搏向量利用多极LV引线120上的至少一个电极144。使用RV尖端电极140和环形电极142来递送RV起搏。可根据患者需要通过在单个心室腔室(LV或RV)或两个腔室(双心室起搏)中起搏来递送CRT。本文所描述的方法可在使用可编程的起搏脉冲计时参数和所选的起搏部位和起搏向量向右心室和/或左心室递送起搏脉冲的双腔室或多腔室起搏器或ICD中实现。

虽然在图1中示出了多腔室ICD,但可以认识到,可在具有或不具有诸如复律和除颤冲击能力的抗心律失常治疗的单腔室、双腔室或多腔室起搏器中实现本文所公开的技术。例如,本文所公开的用于识别CRT的起搏部位(多个)的技术可用于通过识别潜在起搏部位处的心肌疤痕组织来指导任何起搏治疗的起搏部位的选择。

编程器170包括显示器172、处理器174、用户界面176、和通信模块178,通信模块178包括用于与IMD 10通信的无线遥测电路。在一些示例中,编程器170可以是手持设备或基于微处理器的家庭监视器或床边编程设备。用户(诸如,医师、技术人员、护士或其他临床医生)可与编程器170交互,以与IMD10通信。例如,用户可经由用户界面176与编程器170交互以取回当前被编程的操作参数、由IMD 10收集的生理数据或来自IMD10的设备相关的诊断信息。用户还可与编程器170交互以对IMD 10编程,例如,选择用于IMD的操作参数的值。与编程器170交互的用户可发起用于根据本文中所公开的技术来识别潜在起搏部位处的疤痕组织的测试。如将描述的,在用于识别疤痕组织的测试中,多极引线被用于记录多个单极EGM信号,根据EGM信号中的每一个确定EGM信号特征的组合,以及分析该EGM信号特征的组合以检测电极部位处的疤痕组织。

编程器170包括用于实现与IMD 10无线通信的通信模块178。由系统100使用的通信技术的示例包括低频或射频(RF)遥测,例如,其可以是经由蓝牙、WiFi或MICS建立的RF链路。在一些示例中,编程器170可包括编程头,编程头接近患者的身体并靠近IMD 10植入部位放置,并且在其他示例中,编程器170和IMD 10可配置成使用不需要使用编程头以及不需要用户干预来保持通信链路的距离遥测算法和电路来通信。

可以设想,编程器170可经由用于将数据传送至远程数据库或计算机的通信模块178耦合至通信网络,以允许使用本文所描述的技术远程监测和管理患者114。远程患者管理系统可配置成利用目前所公开的技术使临床医生能够查阅测试数据、被编程的治疗参数和授权对IMD 10的编程。对用于与可植入医疗设备一起使用以用于远程患者监测和设备编程的网络通信系统的一般描述和示例的共同转让的美国专利No.6,599,250(Webb等人)、6,442,433(Linberg等人)、6,418,346(Nelson等人)、和6,480,745(Nelson等人)进行参考,所有这些专利通过引用整体结合于此。

图2是IMD 10的一个示例配置的功能框图。在由图2所示的示例中,IMD 10包括处理器和控制单元80(在本文中也称为“处理器”80)、存储器82、信号发生器84、电感测模块86、和遥测模块88。IMD 10进一步包括心脏信号分析器90。

存储器82可包括计算机可读指令,当计算机可读指令被处理器80执行时,使IMD10和处理器80执行在本公开通篇中归因于IMD 10、处理器80、和心脏信号分析器90的各种功能。可在存储器82中对计算机可读指令进行编码。存储器82可包括非瞬变的计算机可读存储介质,该计算机可读存储介质包括任何易失性、非易失性、磁的、光的、或电的介质,诸如随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存存储器、或任何其他数字介质(唯一例外是瞬态传播信号)。

处理器和控制单元80可包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或等效分立或集成的逻辑电路中的任何一个或多个。在一些示例中,处理器80可包括多个部件,诸如一个或多个微处理器、一个或多个控制器、一个或多个DSP、一个或多个ASIC、或一个或多个FPGA、以及其他分立或集成逻辑电路的任何组合。归因于本文中的处理器80的功能可具体化为软件、固件、硬件、或它们的任何组合。在一个示例中,心脏信号分析器90可至少部分地被存储或编码为存储器82中的指令,这些指令由处理器和控制80执行。

处理器和控制单元80包括治疗控制单元,该治疗控制单元控制信号发生器84根据所选的一个或多个治疗程序来向心脏112递送电刺激治疗,例如心脏起搏或CRT,该一个或多个治疗程序可被存储在存储器82中。信号发生器84例如经由相应的引线118、120、122的导体、或者在外壳电极158的情况下经由设置在IMD 10的壳体160内的电导体来电耦合至电极140、142、144A-44D(统称为144)、148、150、158、162和166(这些电极中全部在图1中被示出)。信号发生器84被配置成经由电极140、142、144、148、150、158、162、和166的所选组合生成并向心脏112递送电刺激治疗。在CRT期间,信号发生器84根据治疗控制参数递送心脏起搏脉冲。如将在本文中所描述的,CRT被递送至被识别为不在疤痕组织上的起搏部位。

信号发生器84可包括开关模块(未示出),以及处理器和控制80可使用开关模块例如经由数据/地址总线来选择哪些可用电极被用于递送起搏脉冲。处理器80例如经由开关模块来控制电极140、142、144A-44D、148、150、158、162、和166中的哪个被耦合至信号发生器84以用于递送刺激脉冲。开关模块可包括开关阵列、开关矩阵、多路复用器、或适合于选择性地将信号耦合至所选电极的任何其他类型的开关设备。

感测模块86从电极140、142、144A-144D、148、150、158、162、或166中的所选电极监测心脏电信号以用于感测心脏电事件,以便监测心脏112的电活动。感测模块86还可包括开关模块,该开关模块选择可用电极中的哪些被用于感测心脏电活动。在一些示例中,处理器80经由感测模块86中的开关模块选择电极来用作感测电极、或感测向量。

感测模块86包括多个感测通道,每个通道可选择性地耦合至电极140、142、144A-44D、148、150、158、162或166的相应组合,以检测心脏112的特定腔室的电活动。每个检测通道可包括放大器,该放大器响应于对心脏112的相应腔室中的心脏去极化的感测向处理器80输出指示。以这种方式,处理器80可接收对应于心脏112的各腔室中的R波和P波的出现的感测事件信号,例如,对应于相应心脏腔室的固有去极化的心室感测事件和心房感测事件。感测模块86可进一步包括用于向处理器80或心脏信号分析器90提供数字化的EGM信号的数字信号处理电路。

在各个实施例中,一个或多个感测通道可被选择性地耦合至电极144,电极144被包括在多极引线120上并且用于感测单极EGM信号以用于检测疤痕组织。在一个实施例中,感测模块86包括LV感测通道,并且电极144a、144b、144c和144d以与共同阳极(诸如外壳电极158、线圈电极162、或线圈电极166)结合的单极感测配置一次一个地被选择性地耦合,以获取沿着LV组织的电极144a-144d的相应位置中的每一个的单极EGM信号。

通过心脏信号分析器90分析使用电极144a-144d中的每一个获得的数字化EGM信号以从单极感测到的信号中的每一个提取EGM信号特征的组合,例如,至少两个特征。如以下将更详细描述的,分析被提取的特征以检测疤痕组织。响应于检测疤痕组织,处理器80可生成经由遥测模块88传输的通知和/或建立或改变用于递送CRT治疗的起搏电极选择。处理器80和心脏信号分析器90可共同表示如本文所描述的用于确定疤痕组织的存在的处理器装置。

存储器82存储了间期、计数(counters)、或被处理器80用于控制信号发生器84的起搏脉冲的递送的其他数据。这种数据可包括被处理器80用于控制起搏脉冲到用于CRT的左心室和右心室中的一个或两者的递送的间期和计数(counters)。在一些实施例中,间期和/或计数(counters)被处理器80用于控制起搏脉冲相对于另一腔室中的固有或被起搏的事件的递送的计时(timing)。

可关于2013年6月12日提交的并且被转让给本发明的受让人的美国专利申请S/N13/916,353(例如,图17A-17B)看到IMD 10的功能框图的其他示例。

图3是根据一个实施例的用于检测心脏疤痕组织的一个方法的流程图300。结合图3所描述的方法涉及IMD 10的图1中所示的说明性实施例,IMD 10耦合至具有沿着LV定位的用于在CRT期间递送LV起搏脉冲的四个电极144A-144D的四极引线。然而,可以认识到,本文所公开的技术可被用于包括沿着心脏腔室定位的并且由一个或多个医疗电引线携载的多个电极的各种实施例。

当多个电极是可用的时,可使用能够记录真实的近场双极信号的常规的“短”双极对以通过检测由于本地(local)的近场EGM信号的变化引起的双极EGM信号的变化检测心肌疤痕组织。然而,随着感测电极对之间的距离增加,影响到所记录的EGM信号的组织的体积将增加。更多的远场电活动将影响到所记录的信号,降低用来检测感测电极部位处的疤痕组织的信号的敏感度。多极引线可提供多个感测/起搏部位,然而,沿着多极引线的电极之间的间距可能会大于以足够大敏感度记录下双极信号从而可靠地检测由疤痕组织引起的EGM信号变化所需的间距。当多个电极被定位在沿着心脏腔室的各个部位处时,由流程图300所示的过程提供用于与电极间间距无关地检测电极部位处疤痕组织的存在的技术。

可在IMD和相关联的引线最初被植入时、在重定位或重放置心脏引线时、在植入IMD和相关联的引线之后周期性地执行由流程图300所示的过程。在一些实施例中,可响应于监测到的参数的变化(诸如,血液动力学参数或者起搏夺获阈值的变化)执行由流程图300所示的过程。

在框302处,建立疤痕组织检测阈值。用于检测疤痕的阈值可基于从患者获得的之前的EGM基线记录、在执行用于检测疤痕的测试时从患者获得的EGM记录、或基于来自患者群体的经验数据。阈值可被应用至根据每个单极EGM信号确定的至少两个EGM信号特征。单独的阈值可被单独地应用至两个或两个以上EGM信号特征中的每一个或被应用至根据两个或两个以上EGM信号特征和应用至度量的单个阈值计算的单个度量或指标。

在框304处,抑制LV起搏。在通常不包含来自LV引线或电极的起搏的基线心律期间记录为了检测LV中的心肌疤痕组织目的的EGM信号。心律可以是不具有在任何心脏腔室中递送的起搏的固有心律、心房起搏的心律、RV起搏的心律、或在心房腔室和RV中起搏期间的心律。可以设想,在一些情况下,可存在与起搏电极和被测试以检测疤痕组织的相关联的部位不同的另一LV引线或电极,该另一LV引线或电极可在记录被测试的LV起搏部位处的单极EGM信号期间用于起搏。

在框306处,通过感测模块86记录在没有LV起搏被递送时可用的每个LV电极144a-d的单极LV EGM信号。当n个电极沿着LV定位时,使用与每个LV电极成对的用于感测n个不同单极EGM信号的共同阳极记录LV EGM信号。不同单极EGM信号可取决于在IMD 10的感测模块86中可用的感测通道的数量以顺序的方式一次一个地或同时被记录。每个单极信号可被记录达至少一个心动周期并且通常将被记录达多个周期(例如,3至12个周期)以从给定感测电极部位获得代表性的EGM特征。

在框308处,从每个所记录的单极信号提取至少两个不同的EGM信号特征。假若单极EGM的单个特征不提供足够大的敏感度以可靠地检测由于疤痕组织引起的EGM信号变化,则提取至少两个不同信号特征。从每个单极EGM信号提取的信号特征可包括,但不限于,QRS幅度的度量、Q波的负性、和EGM信号的分离度。可以认识到,可构想用于确定QRS信号幅度的度量、Q波负性的度量、和QRS分离度的度量的多种技术。

为了说明起见,QRS幅度的度量可被确定为在QRS感测窗口期间的峰-峰幅度差。与在感测电极处的健康组织相比,当在感测电极处存在疤痕组织时,QRS幅度预期将减小。

宽的负向Q波也是疤痕组织的证据。可通过对在QRS感测窗口期间是负的的数字化EGM采样点的数量计数,通过确定QRS感测窗口上的EGM采样点值的总和,或通过确定由感测窗口上的EGM信号采样点定义的面积的积分从EGM信号提取Q波负性的度量。

疤痕组织还可导致EGM信号的分离,即,多个峰而不是单个R波峰。可通过对斜率符号变化的次数计数,对峰的数量计数,或对QRS感测窗口期间拐点的数量计数从EGM信号提取EGM信号的分离度的度量。

在一个实施例中,在框308处,根据每个单极EGM信号确定QRS幅度、Q波负性、和/或EGM分离度中的至少两个度量。在框310处,将这些度量单独地和/或以组合的度量与已建立的数个检测阈值相比较。可定义用于检测疤痕组织的标准。例如,三个EGM信号特征中的至少两个必须满足各自的(respective)疤痕检测阈值以检测感测电极部位处的疤痕组织。如果在框312处满足疤痕检测阈值(多个)/标准,则在框314处用于记录相关联的EGM信号的电极被拒绝作为起搏部位。

在框316处,选择用于递送起搏治疗的起搏部位(多个)。在拒绝与疤痕检测相关联的那些电极之后可用的任何电极可被选择用于治疗递送,并且可应用附加的起搏部位选择标准以根据特定起搏应用选择起搏部位。在框316处通过拒绝被识别为沿着疤痕组织设置的任何电极并且应用任何其他治疗起搏部位选择标准(例如,低夺获阈值、低阻抗等)自动地执行起搏部位选择。可在将已检测到疤痕的通知传输至外部编程器或其他设备并指示相关联的电极(多个)之后通过临床医生替代地执行起搏部位选择。在框318处,启用LV起搏使得可在所选起搏部位(多个)处根据被编程的治疗控制参数递送期望的治疗。

图4为根据一个实施例的用于提取单极EGM信号特征以供检测疤痕组织的方法的流程图400。在框402处,在沿着RV定位的电极处感测心脏活动以产生RV心脏活动的单极EGM波形。在固有心律期间,或在心房起搏期间同时没有RV起搏被递送的情况下记录RV单极EGM信号。

在框404处,在沿着LV定位的每个电极处感测心脏活动以产生对应于每个LV电极部位的单极EGM波形。在框406处,从RV和LV单极EGM波形中的每一个提取至少两个特征。被提取的EGM特征表示相关联的电极部位处的心脏活动,并且可包括QRS波形幅度的度量、Q波负性的度量、和QRS波形分离度的度量。在说明性实施例中,从单极EGM波形提取的一个特征是作为QRS幅度的度量的峰-峰幅度差。在另一实施例中,一个被提取的特征是作为Q波负性的度量的在QRS感测窗口期间的所有EGM波形采样点中的具有负极性的EGM波形采样点的百分比。在又一实施例中,一个被提取的特征是作为QRS信号的分离度的度量的在正斜率和负斜率(在任一方向中)之间的EGM波形的斜率变化的次数。可提取EGM波形中的至少两个特征的任何组合。

可通过首先设置QRS窗口提取特征。在一个实施例中,QRS窗口在由包括在IMD感测模块中的感测放大器感测到的R波处居中并且延伸比由感测放大器生成的R波感测标记早和晚的预定时间间期。然后可从窗口期间的波形采样点提取EGM特征。给定特征可逐搏动地提取达预定数量的搏动并然后被平均以确定表示在电极部位处的心脏活动的平均特征,或可确定被提取的特征的中值(median)或模式。替代地,可在QRS窗口上对多个搏动的EGM波形求整体平均,然后可从经平均的QRS波形提取特征。

确定所记录的每个单极EGM信号的特征,并且在框408处,识别根据所有所记录的信号确定的EGM特征的最大值。在框410处,给定EGM特征的最大值(其可以是绝对值)被用于归一化从每个单极EGM波形提取的给定的EGM特征值。以这种方式,确定相对于最大特征值的特征值的百分比差。例如,如果单极EGM信号具有正常峰-峰幅度差并且另一单极EGM信号具有是正常峰-峰幅度的50%的标准化的峰-峰幅度,则较低峰-峰幅度的50%是指示在相关联的电极部位处的疤痕组织的信号特征。一个或多个被提取的特征可通过最大值来标准化并且在框412处与阈值百分比相比较以识别疤痕组织。可以认识到,在一些情况下,可通过最大特征值、平均特征值或其他参考值标准化特征值。在一些示例中,从RV EGM提取用于标准化被提取的特征值的值。

当值取决于特定特征超过阈值百分比或水平或小于阈值百分比或水平时,标准化的值或未标准化的值可指示疤痕。例如,峰-峰幅度差可通过最大值标准化并且被要求小于阈值百分比(例如,50%),而可要求负采样点的百分比大于阈值百分比。斜率变化的次数可保持为未归一化并与阈值数量相比较。在一些实施例中,从RV单极EGM信号推导出应用于从LV单极EGM信号提取的特征值的阈值。

如果基于检测阈值比较,单极EGM信号的至少两个被提取的特征指示疤痕组织,则如决策框414处确定的,在相关联的电极部位处检测到疤痕。在框416处,电极被拒绝用于递送起搏治疗和/或可生成指示检测到疤痕组织和建议拒绝起搏部位的通知。在框418处可从没有被确定为沿着疤痕设置的电极选择起搏部位(多个),并且在框420处,使用所选的起搏部位(多个)启用起搏治疗。在该示例中,所选的起搏部位是沿着LV以用于递送CRT。

图5为用于确定患者的心脏中疤痕组织的存在的外部系统500的示意图。在一些情况下,植入的引线可能不可用于检测疤痕组织的EGM证据,或植入的电极可能不被设置成产生足够敏感的EGM信号以可靠地检测疤痕组织。在这些情况下,可能需要用于在不需要昂贵或复杂的成像系统的情况下确定疤痕组织的存在的系统和方法以确定疤痕是否存在并且以在本文中被称为“疤痕负担”的度量提供有关疤痕的相对尺寸的一些评估。通过逼近疤痕组织的位置和疤痕负担,临床医生可作出明智的治疗决定。例如,如果患者是CRT的候选人,对疤痕的存在的了解和对疤痕负担的估计对临床医生处方(prescribe)CRT和规划用于递送CRT的引线和电极放置是有用的。

系统500包括显示为由用于将电极510定位成沿着患者506的躯干与皮肤接触的耐磨带或条带512携载的外部表面电极510。电极510可替代地为粘合皮肤电极。电极510定位在沿着患者的躯干的多个点处,以记录表面电势信号。在一个示例中,电极510可圆周地围绕患者的躯干均匀地分布。

在一个实施例中,电极510用于通过缠绕在患者506的躯干的周围使得电极510围绕心脏508的条带512从心脏508获取表面电势信号。电极510可围绕患者506的外周定位,包括患者躯干的后表面、侧表面、和前表面。在其他示例中,各电极512可定位在躯干的后表面、侧表面和前表面中的任一个或多个上。电极510可经由有线连接514电连接至ECG处理单元520。一些配置可使用无线连接(例如数据通道)来将由电极510感测到的信号传输到ECG处理单元520。

虽然在图5的示例中,条带512被显示为携载表面电极510,但在其他示例中,各种机构(例如,胶带或粘合剂)中的任一种可被用于帮助电极510以分布的方式沿着患者的躯干间隔开和放置以围绕心脏508。在一些示例中,条带512可包括弹性带、带条、或布。在其他示例中,电极510可分别放置在患者506的躯干上。

电极510记录与心脏508去极化和复极化相关联的电信号。每个电极510可被用在单极配置中来感测反映心脏电活动的表面电势。ECG处理单元520还可耦合到返回电极或中性电极(未示出),该返回电极或中性电极可与用于单极感测的电极510的每一个组合使用。

ECG处理单元520可记录并分析由电极510感测的表面电势信号(在本文中通常被称为“ECG”信号)。处理单元520可被配置成向用户提供指示心脏112中的疤痕组织的存在的输出。用户可进行诊断、处方CRT、定位例如引线的治疗设备、或基于所指示的疤痕组织来选择治疗参数。

携载电极510的条带512是对记录体表ECG信号有用的装置的说明性实施例,根据这些体表ECG信号可确定疤痕组织的存在。其他表面心脏信号记录装置可用于获取心脏信号数据,可根据该心脏信号数据确定疤痕组织的存在。其他信号记录装置和技术可包括12-引线ECG电极、携载电极的阵列的背心、和心电向量描记法。

电极510经由电导体514耦合至ECG处理单元520。通过ECG处理单元520接收ECG信号,ECG处理单元520从每个接收到的信号提取ECG特征以用于产生ECG特征图。可以与以上描述用于提取单极EGM特征的技术类似的方式从由电极510记录的每个ECG信号提取ECG特征。例如,从体表ECG信号确定作为疤痕指示指标的QRS幅度度量、Q波负性度量、ECG分离度量或它们的任何组合。

ECG特征由此单独地或以组合的形式用于确定疤痕指示指标并且通过ECG处理单元520与疤痕检测阈值相比较以确定在心肌组织部位处是否存在疤痕组织。ECG处理单元520报告是否检测到疤痕组织,并例如经由耦合至ECG处理单元的显示屏/监视器522报告疤痕负担。ECG处理单元520可产生患者的躯干的二维模型或三维模型的图形显示524,该图形显示524叠加有基于沿着患者的躯干的电极位置投射到躯干模型上的被提取的ECG特征值的彩色编码的映射。

在一些实施例中,ECG处理单元520和显示屏/监视器522可在外部编程器中实现,诸如图1所示的编程器170。配置成从体表ECG电极接收信号的编程器,诸如CARELINK

ECG处理单元520可被配置成解决心电图的反问题以将ECG数据投射到二维或三维心脏模型上。可由投射在计算机心脏模型上的数据产生图像显示526以创建映射至患者模型的表面电势数据的可视映射。ECG特征值可被表示为相应特征的参考值的归一化值或百分比。

作为附加或替代,可在图形显示528中呈现基于ECG特征值的疤痕组织的所映射的位置。ECG处理单元520可被配置成响应于确定整体心脏疤痕负担指标和识别具有肯定的(affirmative)疤痕指示指标的电极的躯干表面位置。显示528呈现沿着模型心脏的疤痕组织的边界530并报告整体心脏疤痕负担指标。如以下所描述的,疤痕负担指标可被计算为具有肯定的疤痕指示指标的电极510的百分比。

不需要对实际患者解剖结构成像来产生图形显示524、526和/或528。相反,ECG数据被映射至患者的躯干的通用的图形计算机模型和/或心脏,并且在不需要从患者拍摄实际图像(诸如,MRI或CT图像)的情况下产生图形显示。

映射至图形解剖模型的ECG数据的分辨率将取决于所使用的表面电极510的数量和间距。在一些示例中,可能有围绕患者506的躯干空间分布的12至16个电极。其他配置可具有更多或更少的电极。在一个实施例中,最小数量的电极包括以沿着前躯干延伸的两行布置的12个电极和以沿着后躯干延伸的两行布置的12个电极,总共24个电极,这些电极可圆周地围绕躯干均匀分布。

图6是根据一个实施例的用于确定疤痕负担指标的方法的流程图600。在框602处,例如,如图5所示,由分布在患者的躯干上的皮肤电极记录表面电势信号。ECG处理单元经由必要的电导体从每个表面电极接收电势信号,或在一些系统中,可从身体穿戴的设备将电势信号无线地传输至ECG处理单元。

在框604处,包括在ECG处理单元中的处理器使用心脏解剖结构的计算机模型和接收到的电势信号解决心电图的反问题。由反问题解决方案产生的电势信号用于表征心脏模型的表面上的心脏活动。在框606处,从对应于躯干-表面电极的每一个的电势信号提取特征。在一个实施例中,从每个信号确定至少两个特征,其可包括QRS信号幅度的度量、Q波负性的度量和/或QRS信号分离度的度量、或它们的任何组合,如之前所描述的。电势信号和/或经确定的特征可被存储在非瞬态存储介质中,例如,与ECG处理单元相关联的数字存储器。

通过处理器根据电势信号特征确定疤痕指示指标,这些电势信号特征可被标准化或未被标准化并且被结合到单个指标中或单独用作疤痕指示指标。可通过从由分布的电极确定的所有特征值确定最大值、最小值、平均值、中值、模式或其他参考值来标准化特征值。在框608处,将根据在每个表面电极处产生的电势信号确定的每个电极的疤痕指示指标与疤痕检测阈值相比较以识别电极中的哪些电极(如果有的话)导致肯定的疤痕指示指标。以这种方式,心肌疤痕组织被检测为存在于对应于产生导致满足检测阈值要求的疤痕指示指标的电势信号的躯干-表面电极的心脏位置处。

如果在框610处基于具有肯定疤痕指示指标的一个或多个电极检测到疤痕组织,则在框614处计算疤痕负担指标。在一个实施例中,疤痕负担指标被计算为具有肯定疤痕指示指标的躯干-表面电极的比例。作为附加或替代,基于具有肯定疤痕指示指标的电极的数量和位置,疤痕负担指标可被确定为估计的心肌表面积。

在框616处,报告疤痕负担指标。可采用从映射至解剖心脏模型的表面电势信号推导的数据的图形显示报告疤痕负担指标。可利用心脏的计算机模型和电势信号将从表面电势信号获得的数据映射至心脏。例如,该过程可包括基于其上映射有测得的表面信号的模型心脏和模型躯干解决心电图的反问题。反问题的解决将提供在模型心脏的表面上的点或部位处的重构的单极EGM信号。可提取重构的单极EGM特征,并且可如上所述的应用疤痕检测的标准。特征值或存在疤痕组织的指示可被映射和显示给临床医生。可基于与肯定的疤痕指示指标相关联的部位估计并在心脏模型的显示上呈现检测到的疤痕组织的边界。如果在框610处没有检测到疤痕,则可报告该结果,并且可在框612处生成映射有信号特征值或疤痕指示指标的心脏模型的显示。

疤痕负担指标和估计的疤痕边界可被临床医生使用来作出临床决定。例如,如果疤痕负担超过阈值,则针对CRT被评估的患者可被禁止(contraindicated)治疗。具有相对高疤痕负担的患者可能不对CRT作出响应。因此,疤痕负担指标可用作预期接收来自CRT的治疗益处的患者和预期不接收来自CRT的治疗益处的患者的预测指标。在框616处报告的疤痕负担可包括基于超过阈值疤痕负担(不建议CRT)或不超过阈值疤痕负担(建议CRT)的经确定的疤痕负担对CRT治疗的建议。

因此,已描述了用于确定心肌疤痕的存在的系统和方法的多个实施例。然而,在不偏离权利要求书的范围的情况下,本领域的普通技术人员将理解可对所述实施例作出各种更改。例如,虽然已描述了疤痕指示指标或ECG信号特征的具体示例,但可以认识到,可设想其他指示并将其替代用于本文所提供的疤痕检测技术。已单独描述了对确定心肌疤痕的存在有用的可植入系统和外部系统,然而,本文所公开的技术可以任何方式结合成包括在与管理患者和确定患者的疤痕负担相同或不同的时间点处使用一个或两个内部和外部电极的疤痕检测。这些以及其他实施例在以下权利要求的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号