首页> 中国专利> 光导光学元件(LOE)的板之间折射率不均匀性的测量技术

光导光学元件(LOE)的板之间折射率不均匀性的测量技术

摘要

用于测量光导光学元件(LOE)的板之间的折射率不均匀性的系统和方法,其使用创新测量技术,该创新测量技术基于通常用于观察干涉及测试光束的准直的剪切干涉技术。当前实现方式的另一个特征是用于分析所生成的干涉图的特征以表征LOE中相邻板之间的差异的创新方法。

著录项

  • 公开/公告号CN112313499A

    专利类型发明专利

  • 公开/公告日2021-02-02

    原文格式PDF

  • 申请/专利权人 鲁姆斯有限公司;

    申请/专利号CN201980041785.8

  • 申请日2019-06-20

  • 分类号G01N21/45(20060101);G01M11/02(20060101);

  • 代理机构11227 北京集佳知识产权代理有限公司;

  • 代理人董敏;李新燕

  • 地址 以色列耐斯兹敖那

  • 入库时间 2023-06-19 09:57:26

说明书

技术领域

本发明一般涉及光学测试,尤其涉及折射率差的非接触测量技术。

背景技术

生产光导光学元件(LOE)的制造挑战之一是实现折射率的均匀性。不均匀性导致图像质量下降。当光线穿过刻面特别是相对于刻面的法线成大角度时,如果各个板的折射率不能很好地匹配,则将会引入角度偏差。

发明内容

根据本实施方式的教导,提供了一种用于测量折射率不均匀性的方法,包括以下步骤:将投射光投射到光导的前表面上,光导包括:彼此平行的第一对外表面,该外表面包括该前表面和后表面,以及一组涂覆板,该一组涂覆板:彼此平行、在该第一对外表面之间、以及相对于该第一对外表面成非平行角度以及每个板具有对应的折射率;以及捕获干涉图案的干涉图像以测量板之间的折射率不均匀性,干涉图案在折射/反射光线与外部反射光之间,该折射/反射光线是投射光穿过光导,在光导内部反射,然后经由前表面离开光导的结果,以及该外部反射光是投射光从前表面反射的结果。

在可选实施方式中,投射相对于前表面成倾斜角度。在另一可选实施方式中,投射相对于前表面垂直。在另一可选实施方式中,干涉图像与板的折射率之间的折射率不均匀性对应。

在另一可选实施方式中,还包括:确定条纹的一个或更多个部分与条纹的另一个或更多个部分之间的偏差,每个部分与板中的一个或更多个对应,偏差与板的折射率之间的折射率差(不均匀性)对应。

根据本实施方式的教导,提供了一种用于确定折射率不均匀性的方法,包括以下步骤:提供干涉图,干涉图包括一个或更多个条纹,干涉图由以下操作生成:将投射光投射到光导的前表面上,光导包括:彼此平行的第一对外表面该外表面包括前表面和后表面,以及一组板,该一组板:彼此平行,在第一对外表面之间,以及相对于第一对外表面成非平行角度以及每个板具有对应的折射率;以及捕获干涉图案的干涉图像以测量板之间的折射率不均匀性,干涉图案在折射/反射光线与外部反射光之间,折射/反射光线是投射光穿过光导,在光导内部反射,然后经由前表面离开光导的结果,以及外部反射光是投射光从前表面反射的结果;以及确定条纹的一个或更多个部分与条纹的另一个或更多个部分之间的偏差,每个部分与板中的一个或更多个对应,偏差与板的折射率之间的折射率不均匀性对应。

在可选实施方式中,条纹的每个部分与板中的一个对应。在另一可选实施方式中,偏差是相邻的板之间的。在另一可选实施方式中,偏差是跨多个板的。在另一可选实施方式中,偏差是跨所有板的。

在另一可选实施方式中,确定偏差包括确定干涉图中有多少条纹跳跃。

在另一可选实施方式中,还包括基于偏差计算通过/未通过度量的步骤。

在另一可选实施方式中,偏差是使用选自包括以下的组中的至少一种技术确定的:分析干涉图以确定干涉图的轴,旋转和/或转换干涉图,将干涉图分成与条纹正交的N个离散信号阵列,其中N明显大于LOE中的刻面数,以及通过使用选自包括以下的组的相位提取算法计算信号阵列 n=1到N的相位:三桶方法或四桶方法,以及小波变换。

在另一可选实施方式中,从通过整个干涉图确定的偏差得出通过/未通过度量,然后从相邻板之间的偏差得出其他通过/未通过度量。

在另一可选实施方式中,偏差通过以下步骤确定:将干涉图分成与条纹正交的N个离散信号阵列,通过使用相位提取算法计算信号阵列n=1 到N的相位,以及根据n绘制相位,以及确定相位图中的总体最大值与最小值之间的最大相位差。

在另一可选实施方式中,偏差通过以下操作确定:使用条纹之一的一部分,对条纹之一的该部分进行最佳拟合外推,以及将外推与条纹的另一部分进行比较。

在另一可选实施方式中,偏差通过以下操作确定:外推条纹之一以生成理想的条纹,计算条纹中的实际条纹与理想的条纹的偏离。

在另一可选实施方式中,投射光是略微散焦的准直光。在另一可选实施方式中,投射光是单色光。在另一可选实施方式中,投射光在可见光谱中。

根据本实施方式的教导,提供了一种用于测量折射率不均匀性的系统,该系统包括:显示源,准直光学器件,光导以及捕获设备,光导包括:彼此平行的第一对外表面,该外表面包括前表面和后表面;以及一组板该一组板:彼此平行,在第一对外表面之间,以及相对于第一对外表面成非平行角度以及每个板具有对应的折射率,该捕获设备被布置成捕获干涉图案的干涉图像,以测量板之间的折射率不均匀性,干涉图案在折射/反射光线与外部反射光之间:折射/反射光线是投射光穿过光导,在光导内部反射,然后经由前表面离开光导的结果,外部反射光是投射光从前表面反射的结果。

在可选实施方式中,该系统还包括包含一个或更多个处理器的处理系统,该处理系统被配置成确定条纹的一个或更多个部分与条纹的另一个或更多个部分之间的偏差,每个部分与板中的一个或更多个对应,偏差与板的折射率之间的折射率不均匀性对应。

根据本实施方式的教导,提供了一种用于确定折射率不均匀性的系统,该系统包括包含一个或更多个处理器的处理系统,该处理系统被配置成:处理干涉图,该干涉图包括一个或更多个条纹,该干涉图由以下生成:将投射光投射到光导的前表面上,该光导包括:彼此平行的第一对外表面,该外表面包括前表面和后表面,以及一组板,该一组板:彼此平行,在第一对外表面之间,以及相对于第一对外表面成非平行角度,以及每个板具有对应的折射率;以及捕获干涉图案的干涉图像以测量板之间的折射率不均匀性,该干涉图案在折射/反射光线与外部反射光之间:折射/反射光线是投射光穿过光导,在光导内部反射,然后经由前表面离开光导的结果,以及外部反射光是从前表面反射投射光的结果;以及确定条纹的一个或更多个部分与条纹的另一个或更多个部分之间的偏差,每个部分与板中的一个或多个对应,偏差与板的折射率之间的折射率不均匀性对应。

根据本实施方式的教导,提供了一种非暂态计算机可读存储介质,其上嵌有用于测量折射率不均匀性的计算机可读代码,该计算机可读代码包括用于执行任何上述方法的程序代码。

根据本实施方式的教导,提供了一种非暂态计算机可读存储介质,其上嵌有用于确定折射率不均匀性的计算机可读代码,该计算机可读代码包括用于执行任何上述方法的程序代码。

根据本实施方式的教导,提供了一种计算机程序,该计算机程序可以被加载到通过网络连接到客户端计算机的服务器上,使得运行计算机程序的服务器构成根据任何上述公开内容的系统中的处理系统。

附图说明

参照附图仅通过示例的方式来描述实施方式,在附图中:

图1示出了传统的现有技术折叠光学布置。

图2是示例性光导光学元件(LOE)的侧视图。

图3A和图3B示出了选择性反射表面的期望反射行为。

图4是将光耦入到基板中然后耦出到观看者的眼睛中的选择性反射表面阵列的详细截面图。

图5示出了嵌入标准眼镜框架中的LOE的示例。

图6示出了用于制造选择性反射表面阵列的方法。

图7是用于制造选择性反射表面阵列的方法的进一步细节。

图8是LOE测试的示例性部分的概图。

图9是示例性测试设置的高级侧视概图。

图10A是如何形成条纹的侧视概图。

图10B是干涉的详细概图。

图11是产生LOE的各个区域的整体图案的概图。

图12是良好条纹图案的照片。

图13是差条纹图案的照片。

图14是非常差的条纹图案的照片。

图15是被配置成实现本发明的处理模块的示例性系统的高级局部框图。

缩写和定义

为便于参考,本部分包含本文档中使用的缩写、首字母缩写词和简短定义的简要列表。本部分不应视为限制。更全面的描述可以在下面和适用的标准中找到。

1D-一维

2D-二维

CCD-电荷耦合器件

CRT-阴极射线管

DMD-数字微镜器件

EMB-眼动盒

FOV-视野

HMD-头戴式显示器

HUD-平视显示器

LCD-液晶显示器

LcoS-硅上液晶

LED-发光二极管

LOE-光导光学元件

OLED-有机发光二极管阵列

OPL-光程长度

SLM-空间光调制器

TIR-全内反射

具体实施方式

参照附图和所附描述可以更好地理解根据本实施方式的系统的原理和操作。本发明是一种用于测量光导光学元件(LOE)的板之间的折射率不均匀性的系统和方法。新的测量技术基于通常用于来观察干涉及测试光束的准直的已知剪切干涉技术。当前实现方式的另一个特征是用于分析所生成的干涉图的特征以表征LOE中相邻板之间的差异的创新方法。

生产LOE的制造挑战之一是实现折射率的均匀性。不均匀性导致图像质量下降。当光线穿过刻面特别是相对于刻面的法线成大角度时,如果各个板的折射率不能很好地匹配,则将会引入角度偏差。

图1示出了传统的现有技术折叠光学布置,其中,基板2从显示源4 接收光。显示器由准直光学器件6(例如,透镜)准直。来自显示源4的光通过第一反射表面8耦入到基板2中,使得主光线11平行于基板平面。第二反射表面12将光耦出基板并且进入观看者14的眼睛。尽管这种构型紧凑,但这种构型存在明显的缺点。特别地,只能实现非常有限的FOV 和眼动盒(EMB)。

现在参考图2,图2是示例性光导光学元件(LOE)的侧视图。为了减轻上述限制,可以使用在光导光学元件(LOE)内制造的选择性反射表面的阵列。第一反射表面16由从位于设备后面的光源(未示出)发出的准直显示光线(入射光线束)18照射。为了简化当前图,总体描绘了仅一条光线,即入射光线18(也称为“光束”或“入射光”)。诸如光束18A 和18B的其他入射光线可以用于指定入射光瞳孔的边缘,例如,入射光瞳孔的左边缘和右边缘。通常,在此处通过光束表示图像的情况下,应当注意,光束是图像的样本光束,其通常由略微不同角度处的多个光束形成,每个与图像的点或像素对应。除了特别称为图像的末端的地方之外,所示的光束通常是图像的质心。

反射表面16通常是100%反射(全镜)并且反射来自源的入射光,使得光通过全内反射被俘获在光导20内。光导20也称为“平面基板”和“透光基板”。光导20包括彼此平行的至少两个(主)表面,在当前图中示为第一(后,主)表面26和第二(前,主)表面26A。注意,关于主表面(26、26A)的“第一”和“第二”的指定是为了便于参考。可以从各种表面(例如,前边缘、后边缘、侧边缘或任何其他期望的耦入几何结构)耦入到光导。

入射光线18在基板的近端(图的右侧)进入基板。光朝向光导的远端(图的左侧)传播通过光导和一个或更多个刻面(通常至少多个刻面并且典型地为几个、多于3个或4个刻面)。光在传播的初始反射方向28和传播的另一方向30两者中传播通过光导。

俘获的光传播通过光导,从基板20的内表面反射并且穿过选择性反射表面22的阵列。选择性反射表面22通常是部分反射耦出刻面,其中的每一个将一部分光耦出基板进入观看者的眼睛24。

内部部分反射表面,例如,选择性反射表面22在本文档的上下文中通常称为“刻面”。对于增强现实应用,刻面部分地反射,允许来自现实世界的光经由前表面26A进入,穿过包括刻面的基板,并且经由后表面 26离开基板到观看者的眼睛24。刻面的部分反射还允许传播光的一部分继续传播到后续刻面。内部部分反射表面22通常以与光导20的伸长方向成倾斜角度(即,既不平行也不垂直)至少部分地穿过光导20。部分反射可以通过多种技术实现,包括但是不限于传输一定百分比的光和/或使用偏振。

图3A和图3B示出了选择性反射表面的期望反射率行为。在图3A中,光线32从刻面34部分反射并且耦出38基板20。在图3B中,光线36透过刻面34而没有任何显着的反射。

图4是选择性反射表面阵列的详细截面图,该选择性反射表面将光耦入到基板中,然后耦出到观看者的眼睛中。可以看出,来自光源4的光线 18照射在第一反射表面16上,并且反射光线42通过全内反射耦入到基板中。俘获的光线通过另外两个示例性部分反射表面22在点44处逐渐从基板耦出。第一反射表面16的涂层特性不一定类似于其他反射表面22、46的涂层特性。这种涂层可以是完全反射的或者是金属分光板、二向色分光板或混合金属二向色分光板。

图5示出了嵌入标准眼镜框架107中的LOE 20a/20a’和LOE 20b的示例。显示源4以及折叠和准直光学器件6紧邻LOE 20a/20a’组装在眼镜框架的臂部112内,LOE 20a/20a’位于第二LOE 20b的边缘。对于显示源是电子元件(例如,小型CRT、液晶显示器(LCD)、硅上液晶(LCoS)、数字微镜器件(DMD)、微型LED阵列或者OLED)的情况,用于显示源的驱动电子器件114可以组装在臂112的后部内。电源和数据接口116可通过引线118或包括无线电或光传输的其他通信装置连接到臂112。替选地,电池和微型数据链路电子器件可以集成在眼镜框架中。当前图是示例,并且可以构造其他可能的头戴式显示器布置,包括其中显示源平行于LOE 平面或者在LOE的前部安装的组件。

该基本技术的其他细节可以在美国专利7,643,214中找到。

图6示出了制造部分反射表面阵列的方法。多个透明平板(422R,示为五个示例性板S1至板S5)的表面涂覆有所需涂层440,然后将板(S1 至S5)接合在一起以形成堆叠形式442。然后通过切割、研磨和抛光将段 444从堆叠形式切下以产生所需的反射表面阵列446,然后反射表面阵列446可以与其他元件组装以实现整个LOE。根据涂覆板(S1至S5)的实际尺寸和LOE的所需尺寸,可以从每个段444制造多于一个阵列446。

图7是用于制造选择性反射表面阵列的方法的进一步细节。切片的光导446沿着将成为光导的近端处的虚线420A以及沿着将成为光导的远端处的虚线420B切割(例如沿着两侧垂直切割)。这产生光导420。可选地,光导424和光导426分别附接到光导420的近端和远端,并且(光导420、光导424和光导426的)组合被抛光以产生光导(LOE)429。替选地,端板(S1和S5)可以比中间板(S2、S3、S4)厚,导致切片的光导446 具有类似于光导429的结构,其中附接的光导424和光导426的区域来自端板(S1和S5)。

通常,原始透明平板422R中的每一个产生一组涂覆板422的板。每个板422具有三对面,每对面平行于板的外表面。一对面(在当前图中示为左侧和右侧)被涂覆并且接合到相邻的板以形成光导(LOE)的主轴。然后分别研磨和抛光另一对面(“端部”,在当前图中示为在顶部和底部处) 以形成主外表面(包括前表面26A和后表面26)。该组涂覆板包括在板相遇处产生的刻面,因此该组板包括一组刻面。该组刻面彼此平行,在该对主外表面(26A,26)之间,并且相对于主外表面(26A,26)成非平行的角度。

虽然当前图示出了具有非交叠刻面的LOE,但这不是限制性的,并且本发明的实现方式也可以应用于交叠刻面,例如,双重交叠和三重重交叠 (未示出,参见在2018年1月8日提交的PCT/IL2018/050025,其全部内容通过引用并入本文)。

现在参考图8,图8是LOE光导20的测试的示例性部分的概图。当前示例性实现方式使用如上面参照图2所述的LOE。在操作中,入射光线 18可以在近端54处进入LOE 20。在当前的测试设置中,如本领域中已知的,显示源804将光输出到准直光学器件806以产生用于测试的光线(如投射光R的测试光线所示)。测试光线(投射光R)可以是准直的,但通常不是严格准直的,而是稍微散焦以产生用于测试的投射光R。测试优选地使用单色光(即,单个波长的光)来执行,但是也可以用任何波长(通常在可见光谱中)执行。该实现方式不是限制性的,可以使用其他波长,例如,红外线。为了定向,在当前图中,前表面26A朝向入射光线R,通常以如下图所示的角度(图9至图10B)。在这种情况下,入射光线以与LOE 20的前表面26A成向下的角度从页面出来。通常以如图所示相对于前表面26A成倾斜角度朝向前表面26A投射投射光R。该示例性实现方式不是限制性的,并且可以替选地相对于前表面26A垂直地朝向前表面 26A投射投射光R。

折射/反射光线R’和外部反射光线Re’以向上的角度从前表面26A 传播出页面。通过查看图9(如下所述)中的测试设置900可以更好地理解这一点。

测试光线R被示为示例性测试光线R1至测试光线R7,其作为相应的示例性折射/反射光线R’(如R1’至R7’所示)穿过和离开LOE。LOE 光导20包括刻面22,刻面22在主表面(前表面26A和后表面26)之间示出为双线。注意,为了清楚起见,简化了折射/反射光线R1’至折射/ 反射光线R7’的路径。如下所述,在刻面22处每个折射/反射光线R’的光程长度将由于刻面两侧的板之间的不匹配(不均匀性)而变化。

测试光线R也将被外表面(前表面26A)反射为外部反射光Re’。为清楚起见,在当前图中仅示出了一个示例性的外部反射光R7e’光线(为清楚起见,显然未处在正确的反射角度处)。

在当前图中示出的是示例性板422,其包括具有第一折射率n

理想情况下,每个板的折射率的指数应匹配,即,指数应该是均匀的: n

类似地,测试光线R2至测试光线R7将作为各自的反射光线R2’至反射光线R7’穿过LOE,如下(对于每个板的括号中的对应折射率,仅描述一个方向):

R2作为100%经由板3S3(n3)的R2’,

R3作为80%经由板3S3(n3)和20%经由板4S4(n4)的R3’,

R4作为50%经由板3S3(n3)和50%经由板4S4(n4)的R4’,

R5作为20%经由板3S3(n3)和80%经由板4S4(n4)的R5’,

R6作为100%经由板4S4(n4)的R6’,以及

R7作为100%经由板5S5(n5)的R7’。

在当前情况下,由于n

现在参考图9,图9是示例性测试设置的高级侧视示意图。测试设置 900示出了用于测试的示例性配置。为了清楚起见,图中使用双点划线示出了外部反射光Re’,并且使用点划线示出了折射/反射光线R’。显示源 804将光输出到准直光学器件806以产生测试光线R。折射/反射光线R’从LOE 20输出并且由捕获设备1002接收。外部反射光Re’从LOE 20 的外表面反射并且由捕获设备1002接收。捕获设备1002捕获折射/反射光线R’与外部反射光Re’之间的所得干涉信号的图像。为方便起见,由折射/反射光线R’产生并且由捕获设备1002捕获的干涉图像在本说明书中将称为干涉图,即由波干涉形成的图案,尤其是在照片或图中表示的图案,如下所述。

干涉图案用于测量板422之间的折射率不均匀性。干涉图案在折射/ 反射光线(R’)与外部反射光(Re’)之间。折射/反射光线(R’)是投射光R穿过光导20,在光导20内部反射,然后经由前表面26A离开光导 20的结果。外部反射光(Re’)是从前表面26A反射投射光R的结果。

捕获设备可以包括各种实现方式(如对于特定期望测试方便且充分的)。例如,可以将干涉信号(光线R’,Re’)投射到屏幕上,并且使用手持摄像装置来拍摄所得干涉图的图片。在另一个示例中,可以定位CCD (电荷耦合器件)以直接捕获光线(R’,Re’)的干涉。干涉图可选地由处理模块1004存储和处理。

现在参考图10A,图10A是如何形成条纹的侧视图。当从第一LOE 20 前表面26A反射的参考光线(投射测试光线R)(外部反射光Re’)与对应的折射/反射光线R’(其进入LOE20,从后表面26反射)时形成条纹,然后从LOE 20传到屏幕(捕获设备1002)。在当前图中,(参考测试光线 R)的示例性部分被示出为第一部分Ra和第二部分Rb。第一部分Ra穿过、反射、折射并且作为反射光线Ra’离开LOE 20。第二部分Rb作为外部反射光线Rb’从LOE 20的外部前表面26a反射。当来自(自动)准直器系统的出射光束(测试光线R)稍微散焦时,观察到条纹。准直器806 的散焦不会影响条纹偏差的相对变化。与准直器806的较少的散焦将导致进一步分开的相对较少的条纹相比,准直器806的更大的散焦将导致更靠近在一起的更多的条纹。如果准直器未散焦,则所得到的生成的干涉图将是单个条纹,即,全部一个阴影。通常,准直器806被调整(散焦)为足以观察足够的条纹以识别条纹跳跃,但是没有调整(散焦)太多,如条纹将在数量上增加并且变得更靠近并且条纹的形状改变(条纹的形式)将是可辨别的。通常,光导20的外表面(前表面26A和后表面26)被加工到高精度,并且不有助于条纹。

作为参考,图8中光线R1至R7“堆叠”在图10A中所示的页面中,其中,当前图10A中的LOE 20的视图来自图8的LOE 20的左侧。

现在参考图10B,图10B是干涉的详细概图。屏幕上的信号(捕获图像)的出现表示当前图的外部反射光线Re’(双点划线)与反射/折射光线 R’(点划线)光线之间的光程差。当前图是空气与S-TIM8玻璃(n=1.5955) 之间界面处折射的示例,因此LOE 20内部的折射角为26.3°。

现在参考图11,图11是产生LOE的各个区域的整体图案的概图。由于条纹图案包括不穿过LOE 20的光(外部反射光Re’)与穿过LOE 20 的光(折射/反射光线R’)之间的干涉,整体图案显示出穿过LOE 20的各个区域(即,不同的板)的光线的比较信息。在当前图中,板S11、S12、 S13具有各自的折射率(n

条纹(带B)是从干涉图的暗区域的中心延伸通过亮区域并返回到下一个暗区域的中心的区域。例如,条纹B1是暗区域D1与暗区域D2之间的亮区域。当来自两个不同路径的光线重合并且彼此同相时,出现亮区域。即,光线的光程长度被整个波长分开,并且发生相长干涉。因此,当来自两个不同路径的光线重合并且彼此异相时,即,光程长度被(n+1/2)个波长分开,发生相消干涉并且该区域将是暗的。因此,所得条纹图案是 LOE中相对路径长度的直接指示,其又是折射率变化的指示。

在当前图中,条纹通常是水平带,与沿着LOE 20的主轴的对准对应。示出了两个斜率:斜率1130,其与用于板S11和板S12的LOE 20的区域对应,以及斜率1132,其与用于板S12和板S13的LOE 20的区域对应。干涉图1200中的斜率表示光线路径(反射/折射光线R’,如参照图8所述) 在两个板之间逐渐分开的区域(当前图中n

如果板(S11、S12、S13)的折射率之间存在差异,那么1101/1102 光线将具有不同的光程长度(OPL),并且相位的变化将反映在条纹图案的偏差中。(通常相邻的)板的特征之间的这种差异被称为“条纹跳跃”。通过第一水平位置处的条纹的一部分与另一水平位置处的条纹的另一部分之间的垂直差异,可以在干涉图1200中看到条纹跳跃。作为非限制性示例,可以从示例性条纹B2看出具有条纹跳跃1114。通常,条纹(条纹尺寸、条纹宽度)将与条纹尺寸1116所示的尺寸相同。通常,条纹尺寸和条纹跳跃可以从条纹中的任何点测量,例如,从暗区域D的中点或条纹 B的中点测量。在当前示例中,从线1212处具有第一点1111的第一部分到线1212处具有第二点1112的第二部分测量条纹跳跃1114。在这种情况下,从板S11到板S12的光程长度差异导致约一个条纹的条纹之间的差异 (一个条纹1116的条纹跳跃1114)。

作为示例性计算,具有1×10-

材料内部的折射角度由以下公式计算:

其中θ

则这些相邻板中的路径之间的光程长度的差异将是:

其中d是切片厚度(LOE 20的宽度),m是所得条纹跳跃的数量,以及λ是测试光线R的波长。

对于参数n

λ=632.8·10

→m=0.40

因此,1×10

现在参考图12,图12是良好条纹图案的照片。在当前图中,干涉图示出了最大条纹跳跃小于条纹的0.3。这表示不均匀性小于1×10

现在参考图13,图13是差条纹图案的照片。在该示例中,“差”条纹图案表示不均匀性大于被测设备(LOE 20)的特定应用的最大允许不均匀性。在当前图的干涉图的左侧,可以看到几乎整个条纹的条纹跳跃。这与约2×10

现在参考图14,图14是非常差的条纹图案的照片。这种显著的不均匀性导致使用该测试的LOE 20观看到的图案中明显可见的跳跃。

在当前图上绘制的垂直线1400表示刻面边界。由点1402表示的条纹分离表示最大不均匀性。在当前的干涉图中,六个板中的每个都具有明显的折射率差异。在最坏的情况下,条纹跳跃是两个整条纹(水平线1404 之间的条纹跳跃1406)。这与约5×10

确定条纹的一个或更多个部分与条纹的另一个或更多个部分之间的偏差与板的折射率之间的折射率不均匀性对应。可以使用各种方法计算干涉图中条纹跳跃的量(数量)以及所得的偏差计算(不均匀性)。如在图像处理领域中已知的,人通常不可能执行解释或计算,并且必须利用处理器(例如,处理器602)来完成任务,例如,处理计算的总量、准确度和 /或复杂度。使用用于干涉图分析的软件可以促进这些步骤,并且通常需要实现分析干涉图的方法以表征LOE中相邻板之间的差异。

当前的实现方式包括用于确定光导光学元件(LOE)内的板的不均匀性的非接触测量技术、确定不均匀性的干涉图的定性评估的方法。可以使用条纹的偏差来计算LOE的不均匀性的通过/未通过度量。

生成的干涉图示出由输入测试光线的波干涉图案产生的条纹或“抖动”。

可以分析干涉图像以便提取通过/未通过度量,其在本文档的上下文中称为“定量刻面指数增量”(AFID)度量。度量可以在相邻板之间,并且通常是所有板上的增量。

分析干涉图并且确定条纹之间的条纹跳跃量的一个示例性实现方式是外推条纹的一部分,最佳地拟合条纹,然后将该外推与干涉图的另一部分进行比较。

另一示例性实现方式是外推条纹以构建(生成)“理想”条纹。然后,计算来自干涉图的实际条纹(多个)与“理想”条纹相比的偏离(误差、跳跃)。偏离的测量可以在条纹的部分中进行。然后可以使用偏离的测量来计算LOE 20的不均匀性。

举例来说,在可以包括以下步骤的全部或子集的序列中分析图像(干涉图):

1.分析干涉图以确定干涉图的轴,即,完美LOE的均匀路径差的方向。

2.图像旋转变换(该步骤可以通过图像处理或通过光学装置完成)。

3.将干涉图分成与条纹正交的N个离散信号阵列,其中N明显大于LOE中的刻面数,例如,大一个数量级。

4.通过使用诸如以下的已知的相位提取算法来计算信号阵列n=1到 N的相位

a.3桶方法或4桶方法,

b.小波变换,或者

c.其他已知方法。

5.绘制根据n的相位,并且确定相位图中的整体最大值和最小值之间的最大相位差,即,计算AFID度量。

在另一实施方式中,根据上面的步骤1至步骤4来计算AFID度量,然后针对LOE中的每对相邻板块成对地计算。

虽然关于LOE光导20描述了当前实施方式,但是可以预见,基于该描述,所公开的技术可以用于测试其他设备,例如,包括多个板构造和/ 或折射组合的设备。

图15是被配置成实现本实施方式的处理模块1004的示例性系统600 的高级局部框图。系统(处理系统)600包括都经由公共总线612进行通信的处理器602(一个或更多个)和四个示例性存储器设备:随机存取存储器(RAM)604、引导只读存储器(ROM)606、大容量存储设备(硬盘)608和闪存610。如本领域所公知的,处理和存储器可以包括存储软件的任何计算机可读介质和/或固件和/或任何硬件元件(多个),包括但不限于现场可编程逻辑阵列(FPLA)元件(多个)、硬连线逻辑元件(多个)、现场可编程门阵列(FPGA)元件(多个)和专用集成电路(ASIC)元件 (多个)。可以在处理器602中使用任何指令集架构,包括但不限于缩简指令集计算机(RISC)架构和/或复杂指令集计算机(CISC)架构。模块 (处理模块)614在大容量存储设备608上示出,但是对于本领域技术人员明显的是,模块(处理模块)614可以位于任何存储器设备上。

大容量存储设备608是承载用于实现本文描述的测量技术方法的计算机可读代码的非暂态计算机可读存储介质的非限制性示例。这样的计算机可读存储介质的其他示例包括诸如承载有这样的代码的CD的只读存储器。

系统600可以具有存储在存储设备上的操作系统,ROM可以包括用于系统的引导代码,以及处理器可以被配置用于:执行引导代码以将操作系统加载到RAM 604;执行操作系统以将计算机可读代码复制到RAM 604并且执行代码。

网络连接620提供到系统600和来自系统600的通信。通常,单个网络连接向本地和/或远程网络上的其他设备提供一个或更多个链路,包括虚拟连接。替选地,系统600可以包括多于一个网络连接(未示出),每个网络连接将一个或更多个链路提供给其他设备和/或网络。

系统600可以实现为分别通过网络连接到客户端或服务器的服务器或客户端。

注意,根据应用,可以使用模块和处理的各种实现方式。模块优选地以软件实现,但也可以以硬件和固件、在单个处理器或分布式处理器上、在一个或更多个位置处实现。上述模块功能可以组合以及实现为更少的模块或者分成子功能以及实现为更多数量的模块。基于以上描述,本领域技术人员将能够设计针对特定应用的实现方式。

注意,上述示例、使用的数字和示例性计算用于帮助本实施方式的描述。无意的印刷错误、数学错误和/或简化计算的使用不会减损本发明的实用性和基本优点。

就所附权利要求是在没有多项引用的情况下撰写的而言,这仅仅是为了适应不允许这样的多项引用的管辖区域中的形式要求。注意,通过实现这样的多项引用而暗示的所有可能的特征组合被明确地设想到并且应被认为是本发明的一部分。

应当理解,以上描述仅旨在用作示例,并且许多其他实施方式也可能在所附权利要求中限定的本发明的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号