首页> 中国专利> 一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法

一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法

摘要

本发明提供了一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法,包括步骤:(1)确定交通参数、道路的交通等级,初拟路面结构;(2)确定路面结构设计材料参数及温度梯度,计算混凝土面板厚度;(3)确定配筋设计指标要求,包括裂缝间距、裂缝宽度和玄武岩纤维筋屈服强度;(4)初拟配筋率,计算、判断各个配筋设计指标是否满足预先设定的设计要求,修改或优化配筋结果,确定玄武岩纤维筋配筋方案和筋材布置方案。本发明考虑了冲断破坏、均匀温降和干缩对玄武岩纤维筋连续配筋水泥混凝土路面的影响,玄武岩纤维筋连续配筋水泥混凝土路面具有节省钢筋、耐腐蚀、节能环保等优点,能够较好地抑制混凝土在干缩和温降产生的应力,提高路面质量。

著录项

  • 公开/公告号CN108004869A

    专利类型发明专利

  • 公开/公告日2018-05-08

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201711168287.9

  • 发明设计人 张丽娟;许薛军;徐忠正;

    申请日2017-11-21

  • 分类号E01C7/14(20060101);E01C11/06(20060101);

  • 代理机构44102 广州粤高专利商标代理有限公司;

  • 代理人何淑珍

  • 地址 511458 广东省广州市南沙区环市大道南路25号华工大广州产研院

  • 入库时间 2023-06-19 05:13:21

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-07

    授权

    授权

  • 2018-06-01

    实质审查的生效 IPC(主分类):E01C7/14 申请日:20171121

    实质审查的生效

  • 2018-05-08

    公开

    公开

说明书

技术领域

本发明涉及道路工程领域,具体提出一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法,特别是以玄武岩纤维筋为加强筋并且考虑冲断破坏、均匀温降和干缩影响下的玄武岩纤维筋连续配筋水泥混凝土路面设计方法。

背景技术

连续配筋混凝土路面(Continuous Reinforced Concrete Pavement)面层形成垂直于横向裂缝并贯穿于相邻横缝范围的纵向裂缝,进而造成混凝土断裂块是目前CRCP路面的主要破坏形式,即通常所说的冲断破坏。《公路水泥混凝土路面设计规范》(JTG D40-2011)增加了防止冲断破坏的设计考虑,参照美国的力学经验法路面设计指南而制定了确定连续配筋混凝土路面纵向配筋的三项设计要求。

在干缩和温降作用下CRCP必然开裂,间距较小、宽度较大的横向裂缝容易使水渗入导致钢筋腐蚀,并且在荷载作用下极易产生冲断破坏。玄武岩纤维筋(Basalt FiberReinforced Polymer,简称BFRP)以玄武岩纤维为增强材料,其拉伸强度比钢筋高,具有高强度、耐腐蚀、重量轻、耐电磁、良好的抗疲劳性能及耐久性等优点,其热膨胀系数比钢筋更接近于绝大多数混凝土,能够较好地抑制混凝土在干缩和温降产生的应力。

玄武岩纤维筋连续配筋水泥混凝土路面是一种新型路面,具有节省钢筋、耐腐蚀、节能环保等优点。《公路水泥混凝土路面设计规范》(JTG D40-2011)没有给出针对该种路面的设计方法,急需一种考虑了冲断破坏、均匀温降和干缩影响的玄武岩纤维筋连续配筋水泥混凝土路面设计方法。

发明内容

本发明的目的在于针对目前连续配筋水泥混凝土路面的主要病害,提供一种以玄武岩纤维筋取代连续配筋路面中的钢筋并考虑了冲断破坏、均匀温降和干缩影响的连续配筋水泥混凝土路面设计方法。

本发明的技术方案是这样实现的:

一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法,包括下述步骤:

(1)确定交通参数、道路的交通等级,初拟路面结构;

(2)确定路面结构设计材料参数及温度梯度,计算混凝土面板厚度;

(3)确定配筋设计指标要求,包括裂缝间距、裂缝宽度和玄武岩纤维筋屈服强度;

(4)初拟配筋率,计算、判断各个配筋设计指标是否满足预先设定的设计要求,修改或优化配筋结果,确定玄武岩纤维筋配筋方案和筋材布置方案,所述的玄武岩纤维筋配筋方案包括玄武岩纤维筋的直径和间距。

优选地,步骤(2)中所述的材料参数包括:混凝土弹性模量Ec、混凝土线膨胀系数αc、混凝土抗拉强度ft、玄武岩纤维筋与混凝土的粘结滑移系数ks、面层与基层摩阻系数kc、玄武岩纤维筋弹性模量Es和玄武岩纤维筋线膨胀系数αs。其中玄武岩纤维筋与混凝土的粘结滑移系数ks通过拉拔试验确定。

优选地,步骤(3)中所述的确定配筋设计指标要求具体包括:

混凝土面层横向裂缝的平均间距不大于2m;

纵向玄武岩纤维筋埋置深度处的裂缝缝隙平均宽度不大于1mm;

玄武岩纤维筋拉应力不超过其屈服强度,纵向配筋率宜为0.6%~0.9%。

优选地,步骤(4)基于考虑均匀温降、混凝土材料干燥收缩以及基层约束作用而得出的解析解,具体包括步骤:

(41)根据经验初步拟定玄武岩纤维筋连续配筋混凝土路面的纵向配筋方案,包括纵向玄武岩纤维筋的直径ds与横向布置间距b;

(42)计算横向裂缝平均间距Ld,当Ld﹥2m时,增大玄武岩纤维筋的直径或者减小纵筋间距,计算至满足要求;

(43)计算纵向玄武岩纤维筋埋置深度处的横向裂缝缝隙平均宽度ω,当ω≤1mm时,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,计算至满足要求;

(44)计算玄武岩纤维筋应力σs,若玄武岩纤维筋应力未达到屈服强度fsy,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距计算至满足要求;

(45)确定纵向配筋率ρ,配筋率宜在0.6%~0.9%之间;

(46)确定横向玄武岩纤维筋配筋方案。

优选地,步骤(42)中,按式(1)-式(7)式计算计算横向裂缝平均间距Ld,当Ld﹥2m时,增大玄武岩纤维筋的直径或者减小纵筋间距,循环计算至满足要求。

式中:Ld为横向裂缝平均间距(m);ft为混凝土抗拉强度(MPa);ds为纵向玄武岩纤维筋直径(m);Ec为混凝土弹性模量(MPa);Es为玄武岩纤维筋弹性模量(MPa);Ac为混凝土板横截面面积(m2);As为玄武岩纤维筋截面面积(m2);b为玄武岩纤维筋间距(m);kc为混凝土面层与基层之间的摩阻力系数(MPa/m);ks为玄武岩纤维筋与混凝土之间的粘结滑移系数(GPa/m);αc为混凝土线膨胀系数(1/℃);εsh为混凝土干缩系数;ΔT为所在地区的日平均最高气温与最低气温之差;L为裂缝间距初始值,

计算采用迭代方式进行,先初步拟定一个裂缝间距,计算得出相应的Ld,如果|Ld-L|≤0.005,计算结束;否则,应重新假定一个裂缝间距初始值,重复计算,直至满足要求为止。

优选地,所述步骤(43)按式(8)计算纵向玄武岩纤维筋埋置深度处的横向裂缝缝隙平均宽度ω,当ω≤1mm时,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,循环计算至满足要求。

优选地,所述步骤(44)按式(9)计算玄武岩纤维筋应力σs,若玄武岩纤维筋应力未达到屈服强度fsy,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,循环计算至满足要求。

式中:αs为玄武岩纤维筋线膨胀系数(1/℃),

优选地,所述步骤(45)按式(10)确定纵向配筋率ρ,配筋率宜在0.6%~0.9%之间。

式中:ρ为纵向配筋率(%);h为混凝土板厚度(m);Ls为路面宽度(m);ds为纵向玄武岩纤维筋直径(m);n为玄武岩纤维筋的根数,由路面宽度及纵筋间距计算得出。

优选地,所述步骤(46)具体是根据经验初步拟定玄武岩纤维筋连续配筋混凝土路面的横向配筋方案,包括横向玄武岩纤维筋的直径与横筋间距,按照式(11)、(12)计算出所需要的最小横向玄武岩纤维筋配筋率ρ1;接着与式(13)计算出的实际横向玄武岩纤维筋配筋率ρ2进行比较,如果ρ2≥ρ1,则符合要求;否则调整配筋方案直至符合要求。

式中:As为每延米混凝土面层所需玄武岩纤维筋的面积(mm2);Ls为板宽(m);h为混凝土板厚度(mm);μ为面层与基层之间摩阻系数;fsy为玄武岩纤维筋屈服强度(MPa);ρ1为最小横向配筋率(%);ds为横向玄武岩纤维筋直径(mm);n为每延米混凝土面层长的横向玄武岩纤维筋数量,由横筋间距计算得出;ρ2为实际横向配筋率(%)。

相比现有技术,本发明具有如下有益效果:

本发明利用玄武岩纤维筋具有高强度、耐腐蚀、重量轻、耐电磁、良好的抗疲劳性能及耐久性、拉伸强度比钢筋高等优点,提供了一种考虑了冲断破坏、均匀温降和干缩影响的玄武岩纤维筋连续配筋水泥混凝土路面设计方法,使玄武岩纤维筋连续配筋水泥混凝土路面具有节省钢筋、耐腐蚀、节能环保等优点,能够较好地抑制混凝土在干缩和温降产生的应力,减少目前连续配筋水泥混凝土路面的主要病害,提高路面的质量。

具体实施方式

下面结合具体实施例对本发明作进一步的详细说明,但并不构成对本发明的任何限制。

如图1所示,一种玄武岩纤维筋连续配筋水泥混凝土路面设计方法,包括步骤:

(1)确定交通参数、道路的交通等级,初拟路面结构;

(2)确定路面结构设计材料参数及温度梯度,计算混凝土面板厚度;

(3)确定配筋设计指标要求,包括裂缝间距、裂缝宽度和玄武岩纤维筋屈服强度;

(4)初拟配筋率,计算、判断各个配筋设计指标是否满足预先设定的设计要求,修改或优化配筋结果,确定玄武岩纤维筋配筋方案和筋材布置方案,所述的玄武岩纤维筋配筋方案包括玄武岩纤维筋的直径和间距。

具体而言,步骤(1)中,确定交通参数、道路的交通等级,初拟路面结构步骤,按照《公路水泥混凝土路面设计规范》(JTG D40-2011)要求进行。

具体而言,步骤(2)中所述的材料参数包括:混凝土弹性模量Ec、混凝土线膨胀系数αc、混凝土抗拉强度ft、玄武岩纤维筋与混凝土的粘结滑移系数ks、面层与基层摩阻系数kc、玄武岩纤维筋弹性模量Es和玄武岩纤维筋线膨胀系数αs,其中玄武岩纤维筋与混凝土的粘结滑移系数ks通过拉拔试验确定。温度梯度查《公路水泥混凝土路面设计规范》(JTGD40-2011)确定。

具体而言,步骤(3)中所述的确定配筋设计指标要求具体包括:

混凝土面层横向裂缝的平均间距不大于2m;

纵向玄武岩纤维筋埋置深度处的裂缝缝隙平均宽度不大于1mm;

玄武岩纤维筋拉应力不超过其屈服强度,纵向配筋率宜为0.6%~0.9%。

具体而言,步骤(4)基于考虑均匀温降、混凝土材料干燥收缩以及基层约束作用而得出的解析解,具体包括步骤:

(41)根据经验初步拟定玄武岩纤维筋连续配筋混凝土路面的纵向配筋方案,包括纵向玄武岩纤维筋的直径ds与横向布置间距b;

(42)计算横向裂缝平均间距Ld,当Ld﹥2m时,增大玄武岩纤维筋的直径或者减小纵筋间距,计算至满足要求;

(43)计算纵向玄武岩纤维筋埋置深度处的横向裂缝缝隙平均宽度ω,当ω≤1mm时,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,计算至满足要求;

(44)计算玄武岩纤维筋应力σs,若玄武岩纤维筋应力未达到屈服强度fsy,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,计算至满足要求;

(45)确定纵向配筋率ρ,配筋率宜在0.6%~0.9%之间;

(46)确定横向玄武岩纤维筋配筋方案。

具体而言,步骤(42)中,按式(1)-式(7)式计算计算横向裂缝平均间距Ld,当Ld﹥2m时,增大玄武岩纤维筋的直径或者减小纵筋间距,循环计算至满足要求。

式中:Ld为横向裂缝平均间距(m);ft为混凝土抗拉强度(MPa);ds为纵向玄武岩纤维筋直径(m);Ec为混凝土弹性模量(MPa);Es为玄武岩纤维筋弹性模量(MPa);Ac为混凝土板横截面面积(m2);As为玄武岩纤维筋截面面积(m2);b为玄武岩纤维筋间距(m);kc为混凝土面层与基层之间的摩阻力系数(MPa/m);ks为玄武岩纤维筋与混凝土之间的粘结滑移系数(GPa/m);αc为混凝土线膨胀系数(1/℃);εsh为混凝土干缩系数;ΔT为所在地区的日平均最高气温与最低气温之差;L为裂缝间距初始值,

计算采用迭代方式进行,先初步拟定一个裂缝间距,计算得出相应的Ld,如果|Ld-L|≤0.005,计算结束;否则,应重新假定一个裂缝间距初始值,重复计算,直至满足要求为止。

具体而言,所述步骤(43)按式(8)计算纵向玄武岩纤维筋埋置深度处的横向裂缝缝隙平均宽度ω,当ω≤1mm时,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,循环计算至满足要求。

具体而言,所述步骤(44)按式(9)计算玄武岩纤维筋应力σs,若玄武岩纤维筋应力未达到屈服强度fsy,符合条件;否则应增大玄武岩纤维筋直径或者减小纵筋间距,循环计算至满足要求。

式中:αs为玄武岩纤维筋线膨胀系数(1/℃),

具体而言,所述步骤(45)按式(10)确定纵向配筋率ρ,配筋率宜在0.6%~0.9%之间。

式中:ρ为纵向配筋率(%);h为混凝土板厚度(m);Ls为路面宽度(m);ds为纵向玄武岩纤维筋直径(m);n为玄武岩纤维筋的根数,由路面宽度及纵筋间距计算得出。

具体而言,所述步骤(46)具体是根据经验初步拟定BFRP筋连续配筋混凝土路面的横向配筋方案,包括横向玄武岩纤维筋的直径与横筋间距,按照式(11)、(12)计算出所需要的最小横向玄武岩纤维筋配筋率ρ1;接着与式(13)计算出的实际横向玄武岩纤维筋配筋率ρ2进行比较,如果ρ2≥ρ1,则符合要求;否则调整配筋方案直至符合要求。

式中:As为每延米混凝土面层所需玄武岩纤维筋的面积(mm2);Ls为板宽(m);h为混凝土板厚度(mm);μ为面层与基层之间摩阻系数;fsy为玄武岩纤维筋屈服强度(MPa);ρ1为最小横向配筋率(%);ds为横向玄武岩纤维筋直径(mm);n为每延米混凝土面层长的横向玄武岩纤维筋数量,由横筋间距计算得出;ρ2为实际横向配筋率(%)。

本实施例中,配筋应尽量采用“小间距,小直径”的配筋方案。“小间距,小直径”的配筋方式能够增大玄武岩纤维筋与混凝土之间的接触面积,保证面层受力均匀。

玄武岩纤维筋的布置应符合以下要求:

(1)玄武岩纤维筋连续配筋混凝土路面的混凝土面层的纵筋和横筋均应采用螺纹玄武岩纤维筋,直径宜为12~20mm;

(2)玄武岩纤维筋网的位置应控制在混凝土面层顶面下1/3~1/2的范围内;

(3)纵筋的间距不大于250mm,不小于集料最大粒径的2.5倍;

(4)最大横筋的间距宜为300~600mm,直径大时取大值,直径小时取小值;

(5)边缘玄武岩纤维筋至纵缝或自由边的距离宜为100~150mm;

(6)横向玄武岩纤维筋宜斜向设置,其与纵向玄武岩纤维筋的夹角可取60°。

所述玄武岩纤维筋连续配筋混凝土路面除施工缝及构造需要的胀缝以外,完全不需设置胀缝及缩缝。纵向接缝的布设应视路面宽度和施工铺筑宽度而定。纵向施工缝采用平缝形式,纵向接缝应设置拉杆。

端部锚固是玄武岩纤维筋连续配筋混凝土路面施工的重要工序。端部锚固是为了使混凝土层面板在端部能够自由收缩,避免面板收缩受阻而发生断裂。采用的端部锚固措施是在混凝土层面板的端部设置胀缝,胀缝应设置口字型钢筋笼、胀缝板和传力杆。胀缝板应垂直于行车方向,缝宽25mm,胀缝之间采用泡沫板填充。传力杆采用光圆钢筋制成,直径为32mm,长450mm,传力杆的端部套有活动塑料套帽,活动端应采用等间距交错布置,间距为300mm。

玄武岩纤维筋端部与胀缝之间连接的具体做法是采用细铁丝将玄武岩纤维筋端部与口字形钢筋笼捆扎在一起,然后采用环氧树脂粘结搭接处,将搭接处在空气中暴露6h左右(若环氧树脂未完全凝固就浇筑混凝土,则强度将不能充分形成)。在浇筑混凝土之前,先固定传力杆,然后在胀缝板两侧浇筑混凝土,振捣密实后,抽出胀缝板,用填缝料填补空隙部分,并振捣密实。

本发明的上述实例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号