首页> 中国专利> 通过超精细结构保护的紧凑型头戴式显示系统

通过超精细结构保护的紧凑型头戴式显示系统

摘要

提供了一种光学系统,包括:光传输基片(20),具有至少两个外部主要表面和边;光学元件,用于耦合光波进入利用内反射的基片(20);位于基片(20)中的至少一个部分反射面,用于将光波从基片(20)中耦出;至少一个透明空气间隙薄膜(110),包括基座(112)和在基座上构建的定义浮雕构造的超精细结构(111);其中,空气间隙薄膜附连到基片(20)的主要表面之一,浮雕构造面向基片(20),定义了界面平面(58),以便耦合在基片(20)内部的光波基本上完全从界面平面(58)反射。

著录项

  • 公开/公告号CN107111132A

    专利类型发明专利

  • 公开/公告日2017-08-29

    原文格式PDF

  • 申请/专利权人 鲁姆斯有限公司;

    申请/专利号CN201580061163.3

  • 发明设计人 Y·艾米泰;Y·欧菲儿;E·莫;

    申请日2015-11-10

  • 分类号G02B27/01(20060101);

  • 代理机构11038 中国国际贸易促进委员会专利商标事务所;

  • 代理人郑宗玉

  • 地址 以色列雷霍沃特

  • 入库时间 2023-06-19 03:12:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-07-28

    授权

    授权

  • 2017-12-01

    实质审查的生效 IPC(主分类):G02B27/01 申请日:20151110

    实质审查的生效

  • 2017-08-29

    公开

    公开

说明书

技术领域

本发明涉及基片引导的光学设备,具体而言,涉及包括由共同的光传输基片(也被称为光导元件)携带的多个反射面的设备。

背景技术

紧凑型光学元件的一个重要应用是头戴式显示器(HMD),其中,光学模块用作成像透镜和组合器两者,其中,二维图像源被成像到无穷远处并且被反射到观察者的眼睛中。可以直接从诸如阴极射线管(CRT)、液晶显示器(LCD)、有机发光二极管阵列(OLED)之类的空间光调制器(SLM)、扫描源或类似的设备获得显示源,或者可以间接地通过中继透镜或者光纤束获得显示源。显示源包括被准直透镜成像到无穷远处并且通过分别对于非透视应用和透视应用充当组合器的反射或部分反射面传输到观看者的眼睛中的元素(像素)的阵列。通常,常规的自由空间光学模块用于这些目的。然而,随着系统的所希望的视场(FOV)增大,这样的常规光学模块变得更大、更重和更笨重,因此,即使对于诸如系统之类的中等性能的设备,也是不切实际的。这是各种显示器、特别是头戴式应用中的主要缺点,其中系统必然应该是尽可能轻并且紧凑的。

为紧凑性而作的努力导致若干个不同的复杂的光学解决方案,一方面,所有这些光学解决方案对于大多数实际应用仍然不是充分紧凑的,另一方面,就可制造性而言,所有这些光学解决方案存在主要缺点。另外,由这些设计所产生的光学视角的眼睛运动框(EMB)通常非常小,通常小于8mm。因此,即使对于光学系统相对于观看者的眼睛的小的移动,光学系统的性能也非常敏感,并且不允许充分的瞳孔运动以从这样的显示器舒服地阅读文本。

公开号WO 01/95027、WO 03/081320、WO 2005/024485、WO 2005/024491、WO 2005/024969、WO 2005/124427、WO 2006/013565、WO 2006/085309、WO 2006/085310、WO 2006/087709、WO 2007/054928、WO 2007/093983、WO 2008/023367、WO 2008/129539、WO 2008/149339、WO 2013/175465和IL 232197(所有这些都在申请人名下)中所包括的教导都通过引用合并于此。

发明内容

本发明促进对用于HMD以及其他应用的非常紧凑的光导光学元件(LOE)的开发。本发明允许相对宽的FOV,以及相对大的EMB值。作为结果的光学系统提供大的高质量图像,还适应眼睛的大的运动。由本发明提供的光学系统特别有益,因为它基本上比现有技术的实现更紧凑,它还可以轻松地集成到甚至具有专门配置的光学系统中。

因此,本发明的广泛目标是减轻现有技术的紧凑的光学显示设备的缺点,并且根据具体的要求提供具有改善的性能的其他光学组件和系统。

本发明可被实现为有利于大量的成像应用,诸如便携式DVD、蜂窝电话、移动式电视接收机、视频游戏、便携式媒体播放器或任何其他移动显示设备。

LOE的操作的主要物理原理是:光波从LOE的外表面被俘获在利用全内反射的基片内部。然而,存在需要将另一光学元件附连到至少一个外表面的情形。在该情况下,有必要确认,一方面,来自外表面的光波的反射将不会被该附连劣化,另一方面,来往于LOE的光波的耦出机制和耦入机制不会被干扰。结果,需要在外表面处添加角度敏感反射机制,该角度敏感反射机制将基本上反射被耦合在LOE内部并以倾斜角度照射在表面上的全部光波,并且基本上透射以接近于法向入射而照射在表面上的光波。

在以前的发明中(例如,在公开WO 2005/024491中所描述的),说明了向LOE的表面应用角度敏感薄膜介电涂层的反射机制。根据本发明,提出了使用空气间隙薄膜的替代的反射机制,该机制包括蛾眼结构。蛾的眼睛具有不寻常的特性:它们的表面被消除反射的自然的纳米结构的薄膜覆盖。这使得蛾能在黑暗中看清楚,而没有会向捕食者泄露其位置的反射。该结构包括六边形图案的凸块,每个凸块大致200nm高,并且它们的中心间隔开大约300nm。这种抗反射涂层起作用,因为凸块小于可见光的波长,如此,光将表面“看作”在空气和介质之间具有连续的折射率梯度,这通过有效地去除空气透镜界面来缩小反射。人类使用该效果制造出了切实可行的抗反射薄膜,这是一种仿生的形式。蛾眼仿制品表明,对于这些结构,几乎完全消除了对通常入射光的反射。利用其他形状和尺寸的这样的密的不均匀的超精细周期性结构的光学建模和试验证明,可以在较宽的波长范围(从UV到IR)和较宽的光入射角(0±60度)内抑制反射。

根据本发明,蛾眼薄膜或任何类似的超精细结构不被用作抗反射薄膜。相反,利用特殊的超精细结构作为所需要的角度敏感反射机制。当需要将光学元件附连到LOE的外表面时,将空气间隙薄膜粘结到光学元件,以便在附连之后,超精细结构面向LOE。因此,当LOE内部的耦入光波以不同的倾斜角度照射在超精细结构上时,他们只“看见”周期性结构的外部部分。因此,被传入的光学光波“看见”的真实折射率接近于空气的折射率,并且全内反射机制被保留。另一方面,空气间隙薄膜对来自外部场景的传入的光波或从LOE耦出的光波基本上是透明的。

因此,本发明提供了一种光学系统,包括:光传输基片,具有至少两个外部主要表面和边;光学元件,用于耦合光波进入利用内反射的所述基片;位于所述基片中的至少一个部分反射面,用于将光波从所述基片中耦出;至少一个透明空气间隙薄膜,包括基座和在所述基座上构建的定义浮雕构造的超精细结构;其中,所述空气间隙薄膜附连到所述基片的主要表面之一,所述浮雕构造面向所述基片,定义了界面平面,以便耦合在所述基片内部的光波基本上完全从所述界面平面反射。

附图说明

参考下列说明性图、结合某些优选实施例描述本发明,以便可以更全面地理解本发明。

现在详细参考附图,要强调的是,所示出的细节只作为示例,并且只是为了对本发明的优选实施例进行说明性的讨论的目的,以及为了提供被认为对本发明的原理和概念方面最有用并且容易理解的描述的内容而呈现的。关于这一点,并不试图展示比基本理解本发明所需要的内容更详细的本发明的结构细节。结合附图的描述是给本领域的熟练人员指出方向,如何在实践中可以实施本发明的几种形式。

在附图中:

图1是示例性的现有技术LOE的侧视图;

图2是示出用于准直来自显示光源的输入光波的现有技术光学设备的示意图;

图3是示出用于准直来自显示光源的输入光波并将其耦入到LOE中的现有技术系统的示意图;

图4是示出用于准直来自显示光源的输入光波并将其耦入到基片中的另一现有技术系统的示意图,其中,准直模块被附连到基片;

图5示出本发明的示例性实施例,其中,根据本发明,负透镜被附连到光导光学元件的外表面;

图6示出本发明的示例性实施例,其中,根据本发明,负透镜和正透镜被附连到光导光学元件的外表面;

图7a和图7b是空气间隙薄膜的示例性实施例的二维和三维示意图,其中,在平坦的透明基片上构建以比明视(photopic)区域的波长更短的小间距排列的透明介电材料的超精细周期性结构;

图8a和图8b分别示出示例性空气间隙薄膜的侧视图和顶视图;

图9a和图9b分别示出接近于基座的内部横截面的示例性空气间隙薄膜的侧视图和顶视图;

图10a和图10b分别示出接近于空气的外部横截面的示例性空气间隙薄膜的侧视图和顶视图;

图11示出根据本发明的以一个倾斜角度照射在超精细结构的上端的光波的侧视图;

图12示出被附连到LOE的外表面的空气间隙薄膜,其中,根据本发明,耦合的光波照射在LOE和薄膜之间的交界面上;

图13a和图13b分别示出根据本发明的眼镜系统的前视图和嵌入在两个光学透镜之间并被组装在眼镜镜框内部的LOE的顶视图;

图14a、图14b和图14c分别示出根据本发明的非单块光学元件,包括嵌入在前面正透镜和后面负透镜之间、一起安装在镜框内部而不需粘接剂的LOE;

图15a、图15b和图15c分别示出根据本发明的用于使用外围粘合技术将LOE嵌入在两个光学透镜之间的替代方法;

图16a、图16b和图16c分别示出根据本发明的用于将LOE整体嵌入在两个光学透镜之间的替代方法,以及

图17a、图17b和图17c分别示出根据本发明的嵌入在两个平坦基片之间并被组装在镜框内部的LOE。

图18示出本发明的示例性实施例,其中,耦入元件以及耦出元件是衍射光学元件,以及

图19示出本发明的示例性实施例,其中,光学模块被嵌入在手提式显示系统中。

具体实施方式

图1示出可在本发明中使用的包括平面基片20以及相关联的组件的现有技术光学系统(在下文中,也称为“LOE”)的截面图。由从光源的显示器(未示出)准直的光波18照射光学装置(例如,反射面16)。反射面16反射来自光源的入射光波,使得光波被俘获在被俘获在LOE的利用全内反射的平面基片20内部。在基片20的主要下表面26和上表面28的若干次反射之后,被俘获的波到达有选择性的部分反射面22的阵列,该部分反射面22将从基片出来的光耦合到观看者的眼睛24的瞳孔25中。此处,LOE的输入表面将被视为输入光波通过其进入LOE的表面,而LOE的输出表面将被视为被俘获的波通过其离开LOE的表面。在图1中所示出的LOE的情况下,输入表面和输出表面两者都在下表面26上。然而,还可以预想其他配置,其中,输入波和图像波可以位于基片20的相对的两侧,或者当光通过基片的斜边耦合到LOE中。

如图2所示,来自显示光源4的s偏振输入光波2通过其下表面30被耦合到准直模块6,该模块通常由光波透射材料组成。在偏振分光镜31的反射之后,光波通过准直模块6的表面32从基片中耦出。然后,光波穿过四分之一波长延迟板34,被反射光学元件36(例如,平面镜)反射,返回以再次穿过延迟板34,并通过表面32重新进入准直模块6。现在p偏振光波穿过偏振分光镜31,并通过准直模块6的表面38从光导中耦出。然后,光波穿过第二个四分之一波长延迟板40,被组件42(例如,透镜)在其反射面44处准直,返回以再次穿过延迟板34,并通过表面38重新进入准直模块6。现在s偏振光波从偏振分光镜31反射,并通过上表面46离开准直模块。反射面36和44可以通过金属涂层或者介电涂层来实现。

图3示出由参考图2详述的组件构成的准直模块6可以如何与基片20组合以形成光学系统。来自准直模块6的输出光波48通过其下表面26进入基片20。进入基片20的光波从光学元件16反射,并被俘获在基片中,如图2中所示。现在,准直模块6,包括显示光源4、折叠棱镜52和54、偏振分光镜31、延迟板34和40、以及反射光学元件36和42,可以容易地集成到单个机械模块中,并独立于基片进行组装,即使具有不精确的机械容差。另外,延迟板34和40以及反射光学元件36和42可以分别粘接在一起,以形成单个元件。

将准直模块6的所有各种组件附连到基片20将是有益的,以形成单个紧凑元件,从而产生简化的机械模块。图4示出这样的模块,其中,准直模块6的上表面46在界面平面58处被附连到基片20的下表面26。该配置的主要问题是,附连过程取消了基片20和准直模块6之间的以前存在的空气间隙50(在图3中示出)。该空气间隙对于将输入光波48俘获在基片20内部是必要的。被俘获的光波48应该在界面平面58的点62和64处被反射。因此,应该在该平面处,无论是在基片20的主要表面26处,还是在准直模块6的上表面46处,应用反射机制。然而,不能容易地应用简单的反射涂层,因为这些表面还应该对于在示例性点66处进入和离开基片20的光波是透明的。光波应该以小入射角穿过平面48,并以较高的入射角反射。通常,穿过入射角在0°和15°之间,而反射入射角在40°和80°之间。

在上文所描述的本发明的各实施例中,耦合到LOE中的图像被准直到无穷远处。然而,还存在传输的图像应该被聚焦到较近距离的应用,例如,对于患近视并且不能正确地看见位于远距离处的图像的人。图5示出根据本发明的使用透镜的光学系统。来自无穷远处的图像80通过反射面16被耦合到基片20中,然后被部分反射面22的阵列反射到观看者的眼睛24中。(平凹)透镜82将图像聚焦于适当的距离,并可任选地校正观看者的眼睛的其他像差,包括散光。透镜82可以在其平坦表面84处被附连到基片的表面。如以上关于图4所述,必须在透镜和基片之间保留薄的空气间隙,以确保将图像光波80俘获在利用全内反射的基片内部。

另外,在与本发明相关的大多数应用中,假设外部场景位于无穷远;然而,还存在外部场景位于较近距离处的专业应用或医学应用。图6示出基于本发明的用于实现双透镜配置的光学系统。来自无穷远处的图像光波80通过反射面16被耦合到基片20中,然后被部分反射面22的阵列反射到观看者的眼睛24中。来自近距离场景的另一图像86被透镜88准直到无穷远处,然后穿过基片20进入观看者的眼睛24中。透镜82将图像80和86聚焦于适当的距离,通常(但不一定始终)为外部场景图像的原始距离,并在需要时校正观看者的眼睛的其他像差。

图5和图6所示出的透镜82和88分别是简单的平凹透镜和平凸透镜,然而,为保持基片的平面形状,可以替代地使用菲涅耳透镜,菲涅耳透镜可以由带有精细阶梯的薄的模压塑料板制成。此外,代替使用如上文所描述的固定透镜,一个实现透镜82或88的替代方式是使用以电子方式进行控制的动态透镜。还存在用户将不仅能够看见非准直的图像,而且还动态地控制图像的聚焦的应用。已经示出可以使用高分辨率的空间光调制器(SLM)来形成全息元件。目前,用于该目的的最流行源是LCD设备,但是也可以使用其他动态SLM设备。具有几百行/mm的高分辨率的动态透镜是已知的。可以使用这种按照电光方式控制的透镜作为本发明中的所希望的动态元件,代替上文结合图5和图6所描述的固定透镜。因此,用户可以实时地确定并设置由基片投影的虚拟图像和外部视图的真实图像两者的准确的焦平面。

如图6所示,将透镜82和88附连到基片20是有益的,以形成单个紧凑的简化机械模块。清楚地,如上文所描述的主要问题是,附连过程取消了基片20与透镜82和88之间的以前存在的空气间隙,该空气间隙对于将图像光波80俘获在基片20内部是必要的。被俘获的图像光波80应该在界面平面84的点90处被反射,并在点92处透过相同的平面。因此,应该在该平面处应用如上文关于图4所描述的类似的部分反射机制。

为了获得所需的部分反射机制,可以在基片的主要表面处应用角度敏感的薄膜涂层;然而,该实施例的制造会复杂化并且昂贵。用于实现所需的部分反射机制的一种替代方式是将透明空气间隙薄膜110附连到基片的主要表面,如图7a和图7b所示。术语“空气间隙薄膜”涉及在其表面上具有以比明视区域的波长更短的小间距排列的透明介电材料的超精细周期性结构111的光学设备,例如,诸如具有密的(不均匀的)超精细周期性结构111的蛾眼薄膜之类的光学设备(下文简称为“浮雕构造(relief formation)”),该超精细周期性结构111是在平坦的透明基片112(下文简称为“基座”112或“基座薄膜”112)上构建的。优选地,浮雕构造的高度应该(但不一定始终)小于1微米。

如图8a和图8b所示,平行于空气间隙薄膜110的表面的任何横截面121都具有周期性的构造,其中,浮雕构造中的介电材料123的成比例部分作为与薄膜本身的距离的函数而逐渐地变化。

在图9a、图9b和图10a和图10b中进一步可以看出,在接近于基座薄膜112的内部横截面124,即,超精细结构111的下部部分,浮雕构造126中的介电材料125的成比例部分最大,并且基本上接近于1,而在外部横截面127,即,接近于超精细结构111的上部部分,浮雕构造129中的介电材料128的成比例部分最小,即,比在材料125中低得多,并且基本上等于零。

通常,当光波穿过具有周期性结构的光学设备时,发生光的衍射,并且零阶的衍射光(即,透过设备而没有任何衍射的光)的亮度显著地减少。然而,当超精细周期性结构的间距比传入的光波的波长短得多时,没有衍射发生。相反,由于光波“看见”具有包含在此介质中的材料的平均折射率的介质,因此可以获得有效的抗反射特性。

另一方面,如图11中所示,当光波130以倾斜角度在结构的上端照射在周期性的超精细结构111上时,它们只“看见”周期性结构的外部部分,其中,透明材料的成比例部分非常低。因此,由传入的光波“看见”的实际折射率接近于空气131的折射率。

结果,如图12中所示,当这样的空气隙薄膜被附连到基片20的外表面28时,耦合的光波130以高于临界角的角度照射在基片和薄膜之间的交界面132上,由于边界面中的类似于空气的折射率,被限制在薄膜和基片之间的空气131提供光隔离。因此,来自外表面的耦入光波的全内反射的现象将被保留,并且光波将被包含在基片内部。

超精细结构的几何特征(诸如其高度、峰-峰和宽度)通常可以在10到800纳米之间。另外,超精细结构的准确形状不一定是蛾眼的形状。可以使用任何其他纳米结构形状,诸如锥体、棱镜、圆锥及其他。此外,超精细结构也不一定是特定周期性的,虽然周期性结构通常更加容易制造。然而,该超精细结构应该满足下列要求:一方面,结构应该足够坚实,不会在附连处理期间收缩,另一方面,结构的外部横截面中的介电材料的成比例部分应该基本上等于零,以在基片内部维持全内反射现象。另外,超精细结构的基本元件的尺寸不应该太大,以便避免衍射效应。然而,将超精细结构的厚度缩小到100nm以下可能会不希望地使得被俘获的波通过空气间隙薄膜渗透,并且使得全内反射现象变差。结果,超精细结构厚度的典型的所需值在200和300nm之间。

图13a示出眼镜系统140的前视图,而图13b示出嵌入在两个光学透镜141、142之间并被组装在眼镜镜框143内部的基片20的顶视图。可以看出,除光学元件之外,镜框还可以包含其他附件,包括相机144、麦克风145、耳机146、USB连接器、存储卡、惯性测量单元(IMU)等等。

图14a、图14b和图14c示出非单块光学元件150,包括嵌入在前面正透镜151和后面负透镜152之间、一起安装在镜框154内部而无需粘接剂的基片20。空气间隙薄膜110(图14c)被放置或粘合在基片20与透镜151、152之间,其中,超精细结构111分别面向基片20的外表面26和28。可以使用压敏胶粘剂(PSA)将空气间隙薄膜110直接粘结在光学透镜151和152的平面表面上,或者可以使用模压、注模、浇铸、机器加工、软光刻或任何其他直接制造方法来直接制造空气间隙薄膜110作为透镜的集成部件。可以使用压力或粘结技术将嵌入的光学元件150组装在镜框154内部。

图15a、图15b和图15c中示出用于将基片20整体嵌入在两个光学透镜之间的替代方法。使用外围粘合技术将基片20嵌入在光学透镜之间。使用非光学粘接剂或将所有组件安装在一起的任何其他高粘性的粘接剂156,将前透镜151和后透镜152粘结到基片20的外周边缘。粘接剂的粘性应该足够高,以便防止粘接剂泄漏到被限制在薄膜110和基片20之间的气穴131中。这样的泄漏会消除为保留来自基片的外表面的光波的全内反射所需的空气间隙。例如,所需的粘接剂156可以是OP-67-LS或任何室温硬化(RTV)硅胶。

图16a、图16b和图16c中示出了用于将基片20整体嵌入在两个光学透镜之间的另一个替代方法。嵌入的元件的生产过程如下:放置空气间隙薄膜110,超精细结构111面向基片20的外表面26和28;使用诸如静电之类的附连技术;准备具有所需的元件的外部形状的模具160;将基片20插入到模具中;将聚合物浇铸或注入到模具中,通过UV或通过改变聚合物温度来固化聚合物,最后,从模具中弹出嵌入的元件。如以上关于图15a到图15c所述,同样重要的是,在注模处理期间超精细区域与注入的材料隔离,以便防止材料渗漏到基片20和空气间隙薄膜110之间的气穴131中。

图13a到图16c示出用于形成包括嵌入在两个光学透镜之间的基片的光学元件的不同方法,然而,还存在需要将平面元件附连到基片的外表面的实施例。在图4中示出这样的实施例的一个示例,其中,准直元件6被附连到基片20。用于将平面元件附连到基片的其他原因可以是以机械方式保护基片以增强用户的眼睛安全性,或在平面元件的外表面上应用涂层以获得各种特性,诸如,光致变色响应、耐擦伤性、超级疏水性、有色(彩色)视图、偏振、抗指纹等等。

在图17a、图17b和图17c中示出嵌入在两个平坦基片162和164之间并被组装在框架166、167内部的基片20。可以使用机械附连、外围粘结或单块制造来实现基片和平坦基片20的嵌入处理。嵌入处理可包括只将单个元件附连到基片的一个外表面,或组合不同的元件,诸如平坦基片以及弯曲的透镜。

在到目前为止所示出的所有实施例中,用于从基片中耦出光波的元件是位于所述基片中的至少一个平坦的局部反射面,该局部反射面通常涂有部分反射介电涂层,并且不平行于所述基片的主要表面。然而,根据本发明的特殊反射性机制还可以用于其他耦出技术。图18示出基片20,其中,耦入元件170或耦出元件172是衍射元件。另外,还可以使用诸如弯曲的局部反射面之类的其他耦出元件和其他装置。

图13-图17的各实施例只是示出了本发明的简单实现的示例。由于构成系统的核心的基片引导的光学元件非常紧凑并且重量轻,因此它可以安装在大量的各种布置中。许多其他实施例也是可以的,包括遮光板、折叠显示器、单片眼镜以及更多。该实施例被设计用于显示器应该靠近眼睛、头戴式的应用。然而,存在显示器位于不同位置的应用。这样的应用的一个示例是用于移动应用的手持式设备,诸如,例如,智能电话或智能手表。这些智能设备的主要问题是所要求的小尺寸和体积与所期望的高质量图像之间的矛盾。

图19示出基于本发明的替代方法,该方法消除移动设备的小尺寸与在完整格式显示器上观看数字内容的期望之间的当前所需的折衷。该应用是手持式显示器(HHD),其通过将高质量图像直接投影到用户的眼睛中,解决了获得小的移动设备和期望在完整格式显示器上观看数字内容的以前对立的需求。包括显示源4、折叠和准直光学器件190以及基片20的光学模块被集成到智能设备210的机身中,其中,基片20替换了电话的现有的保护罩窗口。具体而言,包括源4和光学特性190的支持组件的体积充分小,以容纳在现代智能设备的可接受的体积内部。为了观看由设备传输的全屏幕,设备的窗口被定位在用户的眼睛24前方,利用高FOV、大的眼睛运动框和舒服的出瞳距离(eye-relief)来观察图像。还可以通过倾斜设备以显示图像的不同部分,以较大的出瞳距离来观看整个FOV。另外,由于光学模块可以以透视配置来操作,因此设备的双态操作是可能的;即,存在将常规显示器212维持原样的选项。以此方式,当显示源4被关闭时,可以通过基片20观看标准显示器。在被设计用于巨大的因特网冲浪、或高质量视频操作的第二虚拟模式下,常规显示器212被关闭,而显示源4通过基片20将所要求的宽的FOV图像投影到观看者的眼睛中。通常,在大多数手持式智能设备中,用户可以通过使用嵌入在设备的前面窗口上的触摸屏来操作智能设备。如图19中所示,可以通过直接将触摸屏220粘结在位于基片20上的外表面空气间隙薄膜110,将触摸屏220附连到智能设备。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号