首页> 中国专利> 一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法

一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法

摘要

本发明公开了一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法,包括以下步骤:S1.在建模时考虑死区的影响,得到逆变器死区畸变电压各电压成分与逆变器输出理想基波电压之间的关系;S2.通过拉普拉斯变换将死区畸变电压的基波和所引入的低次谐波成分加到光伏并网系统的阻抗模型中去,从而得到单个逆变器并网系统的阻抗模型;S3.根据单个逆变器并网系统的阻抗模型,得到多个并网逆变器并联的大型光伏并网系统的诺顿等效电路并得出光伏电站侧的输出阻抗。本发明为分析电网阻抗变化时大型光伏并网系统的稳定性以及电能质量的分析和治理提供参考。

著录项

  • 公开/公告号CN105914774A

    专利类型发明专利

  • 公开/公告日2016-08-31

    原文格式PDF

  • 申请/专利权人 重庆大学;

    申请/专利号CN201610164760.5

  • 申请日2016-03-22

  • 分类号H02J3/38(20060101);

  • 代理机构11275 北京同恒源知识产权代理有限公司;

  • 代理人赵荣之

  • 地址 400044 重庆市沙坪坝区沙坪坝正街174号

  • 入库时间 2023-06-19 00:23:31

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-04-10

    授权

    授权

  • 2016-09-28

    实质审查的生效 IPC(主分类):H02J3/38 申请日:20160322

    实质审查的生效

  • 2016-08-31

    公开

    公开

说明书

技术领域

本发明涉及光伏发电技术领域,具体涉及一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法。

背景技术

随着传统能源不断消耗带来的能源短缺和环境污染问题,太阳能等清洁可再生能源得到了巨大的发展。国家能源局十三五规划表明,到2020年底,太阳能发电装机容量将达到1.6亿千瓦,年发电量将达到1700亿千瓦时并且年度总投资额约为2000亿元。值得注意的是,其中,光伏发电总装机容量将达到1.5亿千瓦。光伏电站也会逐渐趋于大型化,光伏电站的容量将会不断增加,对电能质量和系统稳定性要求将更加严格。而且,大量的逆变器并联将会使电网等效阻抗变大,进一步影响光伏电站的稳定性。另外,为了防止逆变器上下桥臂的直通现象,开关器件的控制信号中必须要注入一定的死区时间,死区的引入将会引发逆变器输出波形的畸变,降低基波电压,引入较低次谐波成分,当光伏电站输出阻抗与电网阻抗相匹配时会引发大型光伏电站与电网之间的谐振,进而影响系统的输出电能质量和稳定性。因此,在分析大型光伏并网系统的稳定性时有必要将死区效应考虑进去,而目前分析光伏并网系统稳定性的主流方法是阻抗分析法,因此有必要将死区建到系统的阻抗模型中去。有的文献分析了逆变电源的死区效应并提出了补偿技术。有的在对单相光伏并网系统建立的阻抗模型中体现了死区效应的影响,但并没有对死区效应引入的非线性因素进行处理,没有真正将死区建立到阻抗模型中去。有的考虑了PWM调制作用产生的高次谐波和死区效应引入的低次谐波对逆变器输出电压的影响但是将死区作用而形成的等效误差电压看成了电源的组成部分,没有体现在阻抗模型当中。

发明内容

鉴于此,本发明的目的是提供一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法。

本发明的目的是通过以下技术方案实现的,

一种考虑死区的多个并网逆变器并联的大型光伏并网系统建模方法,包括以下步骤:

S1.在建模时考虑死区的影响,得到逆变器死区畸变电压各电压成分与逆变器输出理想基波电压之间的关系;

S2.通过拉普拉斯变换将死区畸变电压的基波和所引入的低次谐波成分加到光伏并网系统的阻抗模型中去,从而得到单个逆变器并网系统的阻抗模型;

S3.根据单个逆变器并网系统的阻抗模型,得到多个并网逆变器并联的大型光伏并网系统的诺顿等效电路并得出光伏电站侧的输出阻抗。

进一步,所述步骤S1包括以下子步骤:

频域中逆变器死区畸变电压各电压成分与逆变器输出的理想基波电压的关系为:

G1=Δus1urs=mn(cos(θ)+s>cos(φ0)sin(θ)-ωsin(φ0)sin(θ)ωcos(φ0)+s>sin(φ0))---(17)

G5=Δus5urs=m5n(s>sin(5θ+5φ0)+5ωcos(5θ+5φ0)ωcos(φ0)+s>sin(φ0))·s2+ω2s2+25ω2---(18)

G7=Δus7urs=m7n(s>sin(7θ+7φ0)+7ωcos(7θ+7φ0)ωcos(φ0)+s>sin(φ0))·s2+ω2s2+49ω2---(19)

其中,G1,G5,G7分别表示死区畸变电压的基波,5次和7次谐波与理想电压之间的传递函数。表示死区畸变电压的基波表示死区畸变电压的5次谐波,表示死区畸变电压的7次谐波,urs表示逆变器输出的理想基波电压,m和n分别为死区畸变电压和理想电压的幅值,θ为死区畸变电压与理想电压之间的夹角,φ0为逆变器输出理想电压基波初相角,ω为基波角频率。

进一步,大型光伏并网系统的阻抗模型获得步骤:

S31.对三相死区畸变电压进行傅里叶变换;

S32.取傅里叶表达式的基波、5次和7次谐波将其转化到αβ轴并结合步骤S31的变换结果得出单个逆变器并网系统控制框图;

S33.根据单个逆变器并网系统控制框图及分裂变压器等效电感Lt得到并网系统的诺顿等效电路;

S34.得到N个并网逆变器相并联的大型光伏并网系统等效电路;

S35.对大型光伏并网系统进行等效化简,得到整个大型光伏并网系统的诺顿等效电路,进一步得到大型光伏并网系统的输出阻抗。

由于采用了上述技术方案,本发明具有如下的优点:

本发明将逆变器死区效应建立到系统的阻抗模型中去为分析电网阻抗变化时大型光伏并网系统的稳定性以及电能质量的分析和治理提供参考。

附图说明

为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:

图1为三相逆变电路原理图;

图2为ia>0时驱动信号和输出电压波形图;

图3为死区对基波影响向量图;

图4为考虑死区电流内环控制框图;

图5为并网逆变器诺顿等效电路;

图6为大型光伏并网系统等效电路;

图7为大型光伏并网系统诺顿等效电路;

图8为大型光伏系统输出阻抗波形;

图9为电流传递函数根轨迹;

图10为N变化时奈奎斯特图;

图11为奈奎斯特图局部放大图。

具体实施方式

以下将结合附图,对本发明的优选实施例进行详细的描述;应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。

逆变电路的正常工作,一般要给开关器件的控制信号加上一定的死区时间从而防止逆变器上下桥臂的直通现象,虽然所加的死区时间很短但是其所引起的低次谐波积累效应将会影响电能质量,特别是在大型光伏并网系统中将会使并网电流波形畸变严重,影响系统的稳定运行。

如图1所示,为方便分析,将逆变器的直流侧等效为两个电容的串联,每个电容的电压为直流侧电压的一半即Udc/2。设死区时间为td,开关器件导通时间为ton,关断时间为toff,开关周期为Ts,以a相桥臂为例,当a相电流ia>0时,a相开关脉冲和逆变器输出电压波形如图2所示。

逆变器的实际输出电压UaNr可以等效为理想输出电压UaNi和死区畸变电压ΔUaN的叠加值即:

UaNr=UaNi+ΔUaN(1)

由于开关频率远大于基波频率,可以将死区电压取一个周期内的平均值,由图2可以得出a,N’间的畸变电压ΔUaN’为:

ΔUaN=-Udc(td+ton-toff)Tssign(ia)---(2)

其中:

sign(ia)=1ia>00ia=0-1ia<0---(3)

同理可以得出b相和c相畸变电压ΔUbN’,ΔUcN’的表达式:

ΔUbN=-Udc(td+ton-toff)Tssign(ib)---(4)

ΔUcN=-Udc(td+ton-toff)Tssign(ic)---(5)

由图1可以得到三相死区畸变电压ΔUaN,ΔUbN,ΔUcN表达式:

ΔUaN=ΔUaN-ΔUNNΔUbN=ΔUbN-ΔUNNΔUcN=ΔUcN-ΔUNN---(6)

由(6)式可以得出N,N’间的电压ΔUNN’为:

ΔUNN=13(ΔUaN+ΔUbN+ΔUcN)---(7)

联立(2)-(6)式得a相死区畸变电压ΔUaN为:

ΔUaN=UdcTdfs3[-2sign(ia)+sign(ib)+sign(ic)]---(8)

其中:

Td=td+ton-toff

fs=1TS

可以看出,逆变器输出死区畸变电压三相之间存在耦合关系,且只与三相电流的方向有关。为便于分析,对三相死区畸变电压ΔUaN,ΔUbN,ΔUcN进行傅里叶分解得:

ΔUaN=4πUdcTdfsΣn1nsin(nωt)---(9)

ΔUbN=4πUdcTdfsΣn1nsin[n(ωt-23π)]---(10)

ΔUcN=4πUdcTdfsΣn1nsin[n(ωt-43π)]---(11)

其中:n=6k±1,k=0,1,2…

由傅里叶分解表达式可以看出,死区会引入5次7次等低次谐波,并且还会对基波产生较大影响,由于死区效应所引入的11次及以上高次谐波的幅值随谐波次数的增大而逐渐减小且考虑到LCL滤波器的滤波作用,本实施例只将死区畸变电压的基波和低次谐波建立到大型光伏并网系统的阻抗模型中去。

死区效应所产生的畸变电压基波与理想电压之间幅值和相位上都有差别。如图3所示,逆变器输出电流与死区畸变电压的相位差为180°,实际输出电压与电流夹角为负载功率因数角电流与理想电压之间的夹角为

死区畸变电压的幅值相对于基波电压的幅值很小,本实施例可以近似将理想电压与电流之间的夹角看成实际电压与电流之间的夹角,即功率因数角。因此对于高功率因数的逆变器来说死区效应的影响将更严重。设死区畸变电压与理想电压之间的夹角为:

设逆变器输出的基波电压ur幅值为n,初相角为φ0,则表达式为:

ur=nsin(ωt+φ0)>

死区畸变电压的基波,5次和7次谐波表达式为:

Δu1=m>0+θ)(14)

Δu5=m>0+θ))>

Δu7=m>0+θ))>

则在频域中死区畸变电压各电压成分与逆变器输出理想基波电压传递函数为:

G1=Δus1urs=mn(cos(θ)+s>cos(φ0)sin(θ)-ωsin(φ0)sin(θ)ωcos(φ0)+s>sin(φ0))---(17)

G5=Δus5urs=m5n(s>sin(5θ+5φ0)+5ωcos(5θ+5φ0)ωcos(φ0)+s>sin(φ0))·s2+ω2s2+25ω2---(18)

G7=Δus7urs=m7n(s>sin(7θ+7φ0)+7ωcos(7θ+7φ0)ωcos(φ0)+s>sin(φ0))·s2+ω2s2+49ω2---(19)

通过前面的分析找到了逆变器死区畸变电压与输出理想电压之间的关系,这样便可以将死区效应建立到大型光伏并网系统的阻抗模型中去。根据三相死区畸变电压的表达式,将其进行傅里叶变换如式(9)、(10)、(11)所示,由于本实施例只考虑低次谐波,取傅里叶表达式的基波,5次和7次谐波将其转化到αβ轴得到其表达式:

ΔuαΔuβ=4πUdcTdfssin(ωt)+15sin(5ωt)+17sin(7ωt)-cos(ωt)+15cos(5ωt)-17cos(7ωt)---(20)

结合式(17)-(19),可得出大型光伏并网系统控制框图:图4其中:电流给定值,isαβ:并网电流,Gc(s):PR控制器的传递函数,kc:实现电容电流的有源阻尼,Usαβ:电网电压,L1,L2为滤波电感,C为滤波电容。

Kpwm=kpwm(1+G1+G5+G7)

其中Kpwm为考虑死区后的逆变器等效环节,kpwm表示理想条件下调制波到输出的传递函数,括号里表示考虑死区畸变电压的传递函数。从而便将死区效应建到了控制框图内。通过对框图化简可得到(21)式:

isαisβ=Gi*sαi*sβ-YeqUsαUsβ---(21)

其中:

G=KpwmGcL1L2Cs3+kcKpwmL2Cs2+(L1+L2)s+KpwmGc---(22)

Yeq=L1L2Cs3+kcKpwmL2Cs2+kcKpwmCs+1L1L2Cs3+kcKpwmL2Cs2+(L1+L2)s+KpwmGc---(23)

由式(21)再考虑分裂变压器等效电感Lt得到单个逆变器并网系统诺顿等效电路如图5。

其中并网电流Ipv和系统的输出导纳Ypv表达式如下:

Ipv=Gis*1+YeqLts

Ypv=Yeq1+YeqLts

从而得到N个并网逆变器相并联的大型光伏并网系统等效电路如图6:

对大型光伏并网系统进行等效化简,可得到整个大型光伏并网系统的诺顿等效电路如图7。

由图7可得到由电网侧看进去的大型光伏并网系统的输出导纳为:

2NYPV=2NYeqYeqsLt+1---(24)

系统参数如表1所示,将系统输出导纳取倒数得到加上死区前后输出阻抗波如图8所示,可以看出加上死区后输出阻抗波形和不加死区的输出阻抗波形在低频域具有明显的差别,在相同电网阻抗变化时更容易引起系统的不稳定现象。

表1光伏并网系统参数

由图8可得到整个大型光伏并网系统并网电流Is表达式:

Is=(2NIpv-Y0Ug)·11+2NYpvYg---(25)

可以看出大型光伏并网系统的稳定性由两部分组成,首先须满足光伏电站内部稳定即电流传递函数G/(1+YeqsLt)不包括右半平面极点。其次,可以将并网电流表达式的右半部分看成是前向增益为1的闭环传递函数表达式,即2NYpv/Yg满足奈奎斯特稳定性判据。

由电流传递函数知光伏电站的内部稳定性受到分裂变压器等效电感的影响,根据表1所列参数,图9为分裂变压器等效电感变化时电流传递函数的根轨迹图,可以看出只有在Lt满足一定范围时才能保证系统的稳定。就光伏电站容量N变化时对等效开环传递函数即2NYpv/Yg画出奈奎斯特图,如图10所示,图11为局部放大图。由图11可以看出,当N=1或N=2时系统是稳定的,当N=3时,奈奎斯特曲线包围(-1,j0)点,即系统出现不稳定现象。

本发明将逆变器死区建立到光伏并网系统的阻抗模型中,详细分析了逆变器死区对输出波形的影响,推到出了大型光伏并网系统的诺顿等效电路。对比分析了有无死区时大型光伏并网系统由电网侧看进去的输出阻抗表达式,并依据大型光伏并网系统的阻抗模型推导出并网电流的表达式,应用阻抗分析方法就光伏电站容量分析了大型光伏并网系统的稳定性,并给出了稳定性判别条件。为分析电网阻抗变化时大型光伏并网系统的稳定性以及电能质量的分析和治理提供参考。

以上所述仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号