首页> 中国专利> 自动控制直升机涡轮轴发动机的运行速度的方法,对应的控制设备以及具有该设备的直升机

自动控制直升机涡轮轴发动机的运行速度的方法,对应的控制设备以及具有该设备的直升机

摘要

本发明涉及一种用于对直升机涡轮轴发动机的运行模式进行自动控制的方法,所述方法包括:接收表征直升机的飞行的数据(27、28、29)的步骤(10);选择与模式的改变最相关的涡轮轴发动机的步骤(11);确定所述涡轮轴发动机的运行模式的步骤(12),该运行模式称为所选模式,该所选模式从多个预定运行模式中选择;以及将所述涡轮轴发动机的运行模式控制在所述所选模式的步骤(14)。本发明还涉及一种对应的控制设备。

著录项

  • 公开/公告号CN105829680A

    专利类型发明专利

  • 公开/公告日2016-08-03

    原文格式PDF

  • 申请/专利权人 涡轮梅坎公司;

    申请/专利号CN201480068802.4

  • 申请日2014-12-15

  • 分类号F02C6/02;B64D31/06;F02C6/20;F02C9/28;

  • 代理机构北京派特恩知识产权代理有限公司;

  • 代理人浦彩华

  • 地址 法国波尔多

  • 入库时间 2023-06-19 00:15:09

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-14

    授权

    授权

  • 2017-01-11

    实质审查的生效 IPC(主分类):F02C6/02 申请日:20141215

    实质审查的生效

  • 2016-08-03

    公开

    公开

说明书

技术领域

本发明涉及一种用于自动控制直升机的至少一个涡轮轴发动机的运行模式 的方法。本发明还涉及对应的控制设备和设置有这类控制设备的直升机。本发 明尤其涉及用于在直升机执行的所有任务阶段期间,不在危险飞行状况下控制 直升机的涡轮轴发动机的方法。

背景技术

直升机通常设置有至少两个涡轮轴发动机,这至少两个涡轮轴发动机所运 行的模式取决于直升机的飞行条件。在整个下文中,当在除了起飞、爬升、着 陆或悬停飞行的过渡阶段之外的所有飞行阶段期间,直升机在正常条件下,以 已知缩写AEO(所有发动机运行,AllEnginesOperative)的模式前进时,直升 机被认为处于巡航飞行条件下。在整个下文中,当需要使直升机的总装机容量 可用时,即在起飞、爬升、着陆以及其中一个涡轮轴发动机出故障、缩写为OEI (一个发动机不运行,OneEngineInoperative)的模式的过渡阶段期间,直升机 被认为处于危险飞行条件下。

已知当直升机处于巡航飞行条件下时,涡轮轴发动机在低于其最大连续推 力(在下文中称为MCT)的低功率水平下运行。在一些布置中,在巡航飞行期 间由涡轮轴发动机提供的功率可以小于最大起飞推力(在下文中称为MTO)的 50%。这些低功率水平导致定义为由涡轮轴发动机的燃烧室每小时消耗的燃料 与由所述涡轮轴发动机提供的推力之间的关系的单位消耗量(在下文中称为 SC),SC比MTO的SC大上约30%,因此在巡航飞行期间导致燃料过度消耗。

最后,在地面上的待机阶段期间,飞行员通常更喜欢将各个涡轮轴发动机 置于地面空转以确保能够重新启动它们。涡轮轴发动机因此继续消耗燃料,尽 管不提供任何功率。

此外,直升机的涡轮轴发动机设计为超大尺寸(oversized)的,以能够在 发动机之一出故障的情况下保持直升机飞行。这种飞行条件对应于上述OEI模 式。这种飞行条件跟随着发动机的损失而发生,并导致以下事实:每个运行的 马达提供的功率明显大于其额定功率,以允许直升机克服险情然后继续它的飞 行。每个运行的涡轮轴发动机的燃料消耗因此在OEI状况下明显增加以提供这 种功率增加。

同时,涡轮轴发动机也是超大尺寸的,以能够确保在由飞机制造商规定的 整个航程中飞行,尤其确保在高海拔处和在炎热天气期间飞行。尤其当直升机 具有接近其最大起飞质量的质量时,这些非常受限制的飞行点仅在特定直升机 的特定使用情况下才遇到。结果,一些涡轮轴发动机,虽然定尺寸为能够提供 这样的功率,但是永远不会在这样的条件下飞行。

这些超大尺寸的涡轮轴发动机在质量方面和在燃料消耗方面具有不利的影 响。为了减少这种消耗,在上面描述的所有飞行情况(巡航飞行、OEI模式、 滑行、悬停飞行或地面待机)下,能够停止一个涡轮轴发动机并将它置于所谓 的待机模式。有效的一个或多个发动机则在更高的功率水平下运行以提供所有 需要的功率,因此处于更有利的SC水平。然而,该实践与当前认证规则相反, 涡轮轴发动机未设计为确保与安全标准兼容的重新启动可靠性水平。同样地, 飞行员目前对于在飞行期间将涡轮轴发动机置于待机模式的思想没有意识到或 不熟悉。

此外,处于待机模式下的涡轮轴发动机的重新启动时长通常约为30秒。可 证明对于例如在低的飞行高度且最初有效发动机中部分或完全故障的一些飞行 条件而言,该持续时间太长了。如果处于待机模式的发动机不及时重新启动, 则可证明使用处境困难的发动机降落是危险的,或者甚至可导致功率的完全损 失。

更普遍地,单涡轮轴发动机的功率的即时可用性在所有飞行状况下都引起 危险,其中需要提供功率的增加,这在安全方面要求能够使涡轮轴发动机的总 功率可用。

在FR1151717和FR1359766中,申请人已经提出了以下方法:通过将至少 一个涡轮轴发动机置于已知为连续的稳定飞行模式并且将至少一个涡轮轴发动 机置于该涡轮轴发动机能够根据需要以紧急或正常方式离开的特定待机模式的 可能性,来优化直升机的涡轮轴发动机的单位消耗量。当飞行条件的改变要求 处于待机的涡轮轴发动机激活时,例如当直升机将要从巡航飞行状况过渡到降 落阶段时,离开待机模式被认为正常地发生。以这种方式正常地离开待机模式 发生在10秒和1分钟之间的时段内。当有效发动机出现故障或者出现功率不足 时,或者当飞行条件突然变得困难时,离开待机模式被认为紧急地发生。以这 种方式紧急地离开待机模式发生在小于10秒的时段内。

申请人因此已经提出下面5种待机模式:

-称为正常空转的待机模式,其中燃烧室点火,并且气体发生器的轴以额 定速度的60%到80%之间的速度旋转;

-称为正常超级空转的待机模式,其中燃烧室点火,并且气体发生器的轴 以额定速度的20%到60%之间的速度旋转;

-称为辅助超级空转的待机模式,其中燃烧室点火,并且气体发生器的轴 在机械辅助方式下以额定速度的20%到60%之间的速度旋转;

-称为倾斜飞行的待机模式,其中燃烧室熄火,并且气体发生器的轴在机 械辅助方式下以额定速度的5%到20%之间的速度旋转;

-称为停止的待机模式,其中燃烧室熄火,并且发动机的轴完全停止。

技术问题现在是限定哪个涡轮轴发动机需要置于待机模式。另一技术问题 是确定应该从所有可用的待机模式选择哪种待机模式。另一技术问题是根据直 升机的飞行条件能够从一种待机模式过渡到另一待机模式。另一技术问题是离 开待机模式并返回到额定运行模式。

发明的目的

本发明旨在根据该技术问题提供一种有效且经济的方案。

尤其是,本发明旨在在本发明的至少一个实施例中提供一种用于控制直升 机的涡轮轴发动机的运行模式的方法。

本发明还旨在提供一种对应的控制设备和设置有这类控制设备的直升机。

发明内容

为此,本发明涉及一种用于对直升机的涡轮轴发动机的运行模式进行自动 控制的方法,该直升机未处于危险飞行状况且包括至少两个涡轮轴发动机的, 所述方法包括:

-接收表征直升机的飞行的数据的步骤,

-确定所述涡轮轴发动机的被称为所选模式的运行模式的步骤,所述所选 模式基于表征直升机的飞行的所述数据从多个预定运行模式选择,

-命令所述涡轮轴发动机的运行模式进入所述所选模式的步骤。

根据本发明的方法因此使得从多个预定模式自动选择直升机的涡轮轴发动 机的运行模式成为可能。模式的选择取决于表征直升机的飞行的数据。因此, 根据本发明的控制方法使得将发动机速度改变到表征直升机的飞行的数据的进 展成为可能。根据本发明的方法因此使得在表征飞行的数据允许或要求下从一 种运行模式过渡到另一种更有利(或更不利)的运行模式成为可能。

本发明尤其适合于当直升机处于巡航飞行状况时给涡轮轴发动机选择待机 模式。根据表征直升机的飞行的数据的值,方法可命令所述涡轮轴发动机置于 待机模式和/或从待机模式改变和/或如果条件要求这样做则离开待机模式。

有利地,根据本发明的方法包括以下步骤:为接收的每个数据项分配称为 指定模式的运行模式,该指定模式从多个运行模式选择且取决于所述数据项的 值。

有利地且根据这种变型,每个数据项可采取的每个值具有一个单一对应的 指定模式。换句话说,指定模式每个与数据项的值的单个范围关联。

根据这种变型的方法因此使得给已经接收和分析过的每个数据项分配指定 的运行模式成为可能,该模式取决于数据项的值。换句话说,本发明提供将预 定模式与该数据项的每个可能值关联的预定图表。这些关联是不变的,且作出 这些关联使得指定模式是由数据项的值允许的、燃料效率最高的运行模式。

有利地且根据本发明,确定所述所选模式的所述步骤在于:根据预定的优 先级顺序,从由所述分配步骤提供的所有指定模式选择一种模式。

有利地且根据本发明,包括燃烧室和气体发生器的轴的涡轮轴发动机的多 个预定运行模式至少包括以下模式:

-称为正常空转的待机模式,其中所述燃烧室点火,气体发生器的所述轴 以额定速度的60%到80%之间的速度旋转;

-称为正常超级空转的待机模式,其中所述燃烧室点火,气体发生器的所 述轴以额定速度的20%到60%之间的速度旋转;

-称为辅助超级空转的待机模式,其中所述燃烧室点火,气体发生器的所 述轴在机械辅助方式下以额定速度的20%到60%之间的速度旋转;

-称为倾斜飞行的待机模式,其中所述燃烧室熄火,气体发生器的所述轴 在机械辅助方式下以额定速度的5%到20%之间的速度旋转;

-称为停止的待机模式,其中所述燃烧室熄火,气体发生器的所述轴完全 停止;

-紧急待机-离开模式,其中燃烧室点火,气体发生器的轴在离开待机模式 的命令后小于10秒的时段内被带到80%到105%之间的速度;

-正常待机-离开模式,其中燃烧室点火,气体发生器的轴在离开待机模式 的命令后10秒和1分钟之间的时段内被带到80%和105%之间的速度;

-额定运行模式,其中燃烧室点火,气体发生器的轴以80%到105%之间的 速度驱动。

根据本发明的方法因此使得命令涡轮轴发动机过渡到从多个待机模式、紧 急待机-离开模式、正常待机-离开模式以及额定运行模式选择的至少一种运行 模式成为可能。

有利地且根据本发明,所述预定优先级顺序如下:

-额定运行模式,

-紧急待机-离开模式,

-正常待机-离开模式,

-正常空转模式,

-正常超级空转模式,

-辅助超级空转模式,

-倾斜飞行模式,

-停止模式。

换句话说,确定所述所选模式的步骤在于根据下面的优先级顺序从由所述 分配步骤提供的所有所述指定模式选择模式:额定运行模式,紧急待机-离开模 式,正常待机-离开模式,正常空转模式,正常超级空转模式,辅助超级空转模 式,倾斜飞行模式以及停止模式。

根据这种变型,确定步骤从与数据项中每一个关联的且由分配步骤提供的 所有指定模式中选择具有最高优先级的模式。模式的优先级顺序已经限定,使 得始终确保飞行安全且飞行安全始终最大化。这意味着具有最高优先级的模式 是额定运行模式。该模式中涡轮轴发动机可全速操作并因此装机容量即时可用。 具有接下来的最高优先级的模式是紧急待机-离开模式,其目的在于快速切换到 额定运行模式。具有接下来的最高优先级的模式是正常待机-离开模式,然后是 正常空转模式,然后是正常超级空转模式,然后是辅助超级空转模式,然后是 倾斜飞行模式,最后是停止模式。

换句话说,且举例来说,如果分析过的数据项中至少一个的值位于与额定 运行模式关联的值的范围内,则所选模式将必然是额定运行模式。换句话说, 在本示例中,控制设备不允许发动机进入待机模式,其原因是监测的条件之一 指示直升机需要能够使得涡轮轴发动机的总功率可用以确保最优的安全条件。

根据另一示例,如果分析过的数据项中至少一个的值指示紧急待机-离开模 式且如果当前运行模式不是额定运行模式,则所选模式将必然是紧急待机-离开 模式。实际上,这显示了涡轮轴发动机的当前运行模式无法在考虑到监测的条 件中至少一个时确保足够的安全水平。这因此需要紧急离开当前待机模式以切 换到额定运行模式。

根据另一示例,如果分析过的数据项中一个的值指示辅助超级空转模式且 如果没有其他值指示具有更高优先级的运行模式(即,如果没有值指示额定模 式、紧急待机-离开模式、正常待机-离开模式、正常空转模式或者正常超级空 转模式),则辅助超级空转模式是所选模式且涡轮轴发动机被置于辅助超级空转 模式。

根据本发明的方法持续监测表征直升机的飞行的所有数据,并使直升机的 运行模式自动适应于条件的进展(progression)。

根据本发明的方法因此使得通过持续选择最适合于遇到的条件的运行模式 而优化飞行安全成为可能。

此外,根据本发明的方法有助于通过持续尝试将发动机置于可能最有利的 模式而优化燃料消耗,同时确保飞行安全。最有利的并因此燃料效率最大的模 式的顺序是按照优先级排序的模式的顺序的相反顺序:停止模式,倾斜飞行模 式,辅助超级空转模式,正常超级空转模式,正常空转模式,正常待机-离开模 式,紧急待机-离开模式以及额定运行模式。

如果所选模式不同于当前模式,则根据本发明的方法自动使得涡轮轴发动 机切换到所选模式。这还使得如果飞行条件允许则根据燃料消耗争取最有利的 模式或者保持在最优安全条件成为可能。

当然,如果没有待机模式是可行的,则涡轮轴发动机保持在额定运行模式, 如果数据不允许这样做,则没有待机模式是可行的。

有利地且根据本发明,表征直升机的飞行的数据包括关于直升机的飞行条 件的数据和/或关于直升机的环境条件的数据和/或关于所述涡轮轴发动机的状 态的数据。

关于直升机的飞行条件的数据例如是表征直升机的前进速度、燃料消耗、 约束水平、针对涡轮轴发动机的运行限制可用的功率储备等的数据。

关于环境条件的数据例如是表征外部温度、外部压力、离地高度、湿度、 大气条件(雨、霜、风、雷暴等)、附近障碍物的存在等的数据。

关于涡轮轴发动机的状态的数据例如是表征涡轮轴发动机的损坏量、涡轮 的状态、动力单元的非推进部件(电机、电力电子器件、液压机、轮胎、烟火 装置)的状态、用于紧急启动的储能装置的状态、故障管理等的数据。

表征直升机的飞行的数据因此不可能包括所有上面提到的数据以及这些数 据的变型,例如相对于地面的高度的变化或前进速度的变化。

根据本发明的方法因此使得考虑多个不同的数据并从中获得适合于直升机 的飞行状况的涡轮轴发动机的运行模式成为可能。

有利地,根据本发明的方法进一步包括:从所述直升机的所述涡轮轴发动 机中选择与模式改变最相关的一个涡轮轴发动机的步骤。

根据这个有利的变型,本方法从直升机的所有涡轮轴发动机确定可能置于 更有利的模式、尤其是待机模式下的发动机。该选择例如可基于每个涡轮轴发 动机的磨损来确定,如果表征直升机的飞行的数据允许则随后选择磨损最严重 的涡轮轴发动机置于待机模式。该选择还可在于:交替地选择每个涡轮轴发动 机,使得在第一可能待机期间在选择步骤中选择第一涡轮轴发动机,以及在第 二可能待机期间在选择步骤中选择第二涡轮轴发动机,等等。

本发明还涉及一种用于对直升机的涡轮轴发动机的运行模式进行自动控制 的设备,所述设备包括:

-用于接收表征直升机的飞行的数据的模块,

-用于确定所述涡轮轴发动机的称为所选模式的运行模式的模块,所选模 式基于表征直升机的飞行的所述数据从多个预定运行模式中选择,

-用于命令所述涡轮轴发动机的所述运行模式进入所述选择模式的模块。

根据本发明的控制设备有利地实现根据本发明的方法,根据本发明的方法 有利地由根据本发明的设备实现。

贯穿全文,“模块”表示软件元件、可单独编译的软件程序的子单元,该子 单元独立使用要么与程序的其它模块一起组装,或者表示硬件元件,或者硬件 元件和软件子程序的组合。这类硬件元件可包括专用于一应用的集成电路(专 用集成电路,缩写为ASIC),或者可编程逻辑设备,或者任何等同的硬件。一 般来说,模块因此是使得可以确保功能的元件(软件和/或硬件)。

有利地,根据本发明的设备包括用于为由所述接收模块接收的数据的每个 数据项分配被称为指定模式的运行模式的模块,所述指定模式从所述多个操作 模式中选择并取决于所述数据项的值。

有利地且根据本发明,用于确定所选模式的所述模块设计为:根据预定优 先级顺序,从由所述分配模块提供的所有的所述指定模式中选择选择模式。

有利地,根据本发明的控制设备进一步包括用于从所述直升机的所述涡轮 轴发动机选择与模式改变最相关的涡轮轴发动机的模块。

本发明还涉及一种包括至少两个涡轮轴发动机的直升机,每个涡轮轴发动 机包括由调节设备控制的燃气涡轮,其特征在于,直升机包括根据本发明的控 制设备。

有利地且根据本发明,控制设备容纳在每个涡轮轴发动机的所述调节设备 中。

有利地且根据另一变型,控制设备通过无线连接与每个涡轮轴发动机的每 个调节设备通信。

本发明还涉及一种控制方法、控制设备以及设置有这类控制设备的直升机, 其特征在于,由上面提到的或下面的特征中的一些或所有相组合。

附图说明

通过阅读下面仅通过非限制性示例且参照附图给出的描述,本发明的其他 目的、特点和优点将显露出来,在附图中:

-图1是根据本发明的实施例的用于控制涡轮轴发动机的运行模式的方法 的示意图,

-图2是在根据本发明的实施例的方法中,基于数据项的值为所述数据项 分配指定的运行模式的步骤所需要的图表的示意图,

-图3是根据本发明的实施例的控制设备的示意图,

-图4是根据本发明的实施例的直升机的组织架构的示意图,

-图5是根据本发明的实施例的直升机的不同组织架构的示意图,

-图6是根据本发明的实施例的直升机的不同组织架构的示意图。

具体实施方式

如图1所示,根据本发明的方法包括接收表征直升机的飞行的数据的接收 步骤10。根据附图中的实施例,接收的数据是关于直升机的飞行条件的数据27、 关于直升机的环境条件的数据28、以及关于涡轮轴发动机的状态的数据29。

根据附图中的有利实施例,该方法还包括:选择与模式改变最相关的涡轮 轴发动机的步骤11。根据图1的有利实施例,该方法还包括:为接收的数据的 每个数据项分配运行模式的步骤12,该运行模式为指定模式,指定模式从多个 预定运行模式中选择并取决于所述数据项的值。方法还包括:确定涡轮轴发动 机的称为所选模式的运行模式的步骤13,所选模式根据预定优先级顺序从在分 配步骤12中获得的所有指定模式中选择。最后,该方法包括命令涡轮轴发动机 的运行模式进入所选模式的步骤14。

图2示意性地示出了为接收的每个类型的数据项分配指定的运行模式的步 骤12的原理。

图2中的表的第一行包含所有预定模式,这所有的预定模式根据本实施例 存在8个预定模式。然而,根据其他实施例,可分配给数据的预定模式的数量 当然可以不同。

预定的指定模式对应于每个数据项的每个取值范围。取值范围通过连接并 增加值来限制。例如,由A表示的数据项包括A2<A3<A4<A5<A6<A7<A8。因 此,根据数据项的值,单个指定模式与之对应。

例如,对于由A表示的数据项,如果数据A的值在范围[A4;A5]内,则用 于该数据项A指定的运行模式可以是模式4。

在该分配步骤12结束时,为在接收步骤10期间接收的每个数据项分配一 模式。

现在将考虑5种类型的接收的数据A、B、C、D和E的示例,其中接收的 数据A、B、C、D和E的值分别位于范围[A4;A5]、[B2;B3]、[C4;C5]、[D5; D6]和[E6;E7]内。

在分配步骤12结束时,数据A、B、C、D和E的项因此分别与模式4、2、 4、5和6关联。

模式按照预定的优先级顺序布置。

根据附图中的实施例,下面的运行模式是可行的且以下面的方式布置。

具有最高优先级的模式是额定运行模式,其中,燃烧室点火,气体发生器 的轴以80%到105%之间的速度驱动。该模式表示为图2中的模式8。

具有接下来的最高优先级的模式是紧急待机-离开模式,其中,如果燃烧室 还未点火则燃烧室必须点火,按照离开待机模式的命令,气体发生器的轴在小 于10秒的时段内被提升到额定速度。该模式表示为图2中的模式7。

具有接下来的最高优先级的模式是正常待机-离开模式,其中,如果燃烧室 还未点火则燃烧室必须点火,按照离开待机模式的命令,气体发生器的轴在10 秒和1分钟之间的时段内被提升到额定速度。该模式表示为图2中的模式6。

具有接下来的最高优先级的模式是称为正常空转的待机模式,其中,所述 燃烧室点火,气体发生器的所述轴以额定速度的60%到80%之间的速度旋转。 该模式表示为图2中的模式5。

具有接下来的最高优先级的模式是称为正常超级空转的待机模式,其中, 所述燃烧室点火,气体发生器的所述轴以额定速度的20%到60%之间的速度旋 转。该模式表示为图2中的模式4。

具有接下来的最高优先级的模式是称为辅助超级空转的待机模式,其中, 所述燃烧室点火,气体发生器的所述轴在机械辅助方式下以额定速度的20%到 60%之间的速度旋转。该模式表示为图2中的模式3。

具有接下来的最高优先级的模式是称为倾斜飞行的待机模式,其中,所述 燃烧室熄火,气体发生器的所述轴在机械辅助方式下以额定速度的5%到20% 之间的速度旋转。该模式表示为图2中的模式2。

具有接下来的最高优先级的模式是称为停止的待机模式,其中,所述燃烧 室熄火,气体发生器的所述轴完全停止。该模式表示为图2中的模式1。

因此,在分配步骤12结束时,数据项A和C表示正常超级空转模式。数 据项B表示倾斜飞行模式。数据项D表示正常空转模式,以及数据项E表示正 常待机-离开模式。

确定所选模式的步骤13从所有指定模式中选择具有最高优先级的模式。换 句话说,且在示例的情况下,确定步骤13从由正常超级空转模式、倾斜飞行模 式、正常空转模式以及正常待机-离开模式形成的组中选择具有最高优先级的模 式。

在此情况下,具有最高优先级的模式是正常待机-离开模式。

因此,控制步骤14在于:命令在选择步骤11中选择的涡轮轴发动机进入 正常待机-离开模式。

相同的过程以规则的和预定的间隔重复,以将涡轮轴发动机的运行模式改 变到在接收步骤中接收的数据的进展。

图3是根据本发明的实施例的控制设备的示意图。

控制设备包括:用于接收表征直升机的飞行的数据的模块20、用于选择与 模式改变最相关的涡轮轴发动机的模块21、用于为由所述接收模块20接收的 每个数据项分配指定的运行模式的模块22、用于确定从多个指定的运行模式中 选择的所选运行模式的模块23、以及用于命令涡轮轴发动机的运行模式进入所 选模式的模块24。

根据附图中的实施例,由接收模块20接收的数据是关于直升机的飞行条件 的数据27、关于直升机的环境条件的数据28、以及关于涡轮轴发动机的状态的 数据29。

一旦确定模块23确定了所选模式,则控制模块24将改变模式的命令发送 到所选择的涡轮轴发动机的电子调节器处,即涡轮轴发动机中控制涡轮轴发动 机的燃气涡轮33的电子调节器31或者涡轮轴发动机中控制涡轮轴发动机的燃 气涡轮34的电子调节器32。电子调节器31和32还适合于操作燃气涡轮33和 34的非推进部件36和37。

根据图3中的实施例,控制设备控制包括两个涡轮轴发动机的直升机的运 行模式,每个涡轮轴发动机包括由电子调节器31、32(更通常地称为EECU) 控制的燃气涡轮33、34。每个调节器31、32控制燃气涡轮的非推进部件35、 36和对应的燃气涡轮33、34。

根据另一实施例,且如图4、5和6所示,控制设备60对包括三个涡轮轴 发动机40、41、42的直升机的运行模式的选择进行控制。

根据图4的实施例,控制设备60位于涡轮轴发动机40、41、42的外部且 通过无线连接63与每个涡轮轴发动机的每个调节设备50、51、52通信。在图 4中,为了清楚起见,仅示出了控制设备60和涡轮轴发动机40的调节设备50 之间的连接63。然而,控制设备60与每个调节设备通信,从而如果在数据要 求下则能够命令关联的涡轮轴发动机的运行模式发生改变。

根据图5的实施例,控制设备60被划分到发动机计算机和直升机航空电子 设备之间。

根据图6的实施例,控制设备60容纳在专用的外壳中。

本发明不只是限于描述的实施例。具体地,用于容纳控制设备的其他类型 的架构是可行的。此外,根据本发明的控制方法和设备可用于控制包括不同数 量的涡轮轴发动机和/或具有不同数量的运行模式的直升机。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号