首页> 中国专利> 基于大型企业电力系统的电力数据处理方法和装置

基于大型企业电力系统的电力数据处理方法和装置

摘要

本发明提供一种基于大型企业电力系统的电力数据处理方法和装置,其中,该方法包括:获取电力综合保护系统中的N条回路的电力数据,N条回路为总变电站分别与N个配电变电站之间的回路;采用预设方法分别对N条回路的电力数据进行电力数据分析或电力数据预测,得到N条回路的电力数据处理结果;根据N条回路的电力数据处理结果,分别对应调整N条回路上的设备和线路。可以对电力综合保护系统保存的各回路的电力数据进行数据分析和预测,从而有效利用电力数据的信息及时的获取到各配电变电站的运行状态、以及各条回路的运行状态,对各回路上的设备、线路进行调整;进而使得用户可以高效的管理各变电站以及各回路。

著录项

  • 公开/公告号CN105811579A

    专利类型发明专利

  • 公开/公告日2016-07-27

    原文格式PDF

  • 申请/专利权人 中车唐山机车车辆有限公司;

    申请/专利号CN201610148380.2

  • 发明设计人 温从溪;高鹏飞;

    申请日2016-03-15

  • 分类号

  • 代理机构北京同立钧成知识产权代理有限公司;

  • 代理人陶敏

  • 地址 063035 河北省唐山市丰润区厂前路3号

  • 入库时间 2023-06-19 00:13:49

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-05-04

    授权

    授权

  • 2016-08-24

    实质审查的生效 IPC(主分类):H02J13/00 申请日:20160315

    实质审查的生效

  • 2016-07-27

    公开

    公开

说明书

技术领域

本发明涉及电力系统技术,尤其涉及一种基于大型企业电力系统的电力数据处理 方法和装置。

背景技术

随着经济和社会的发展,电力系统广泛的应用到社会的生活和生产的各个方面 中。在大型企业中,电力系统中具有一个总变电站和多个分别与总变电站连接的配电变电 站,总变电站与一个配电变电站连接之后形成一个回路。从而需要对各配电变电站的运行 状态进行及时的获取,根据各回路的运行状态,对各回路上的设备进行调整。

从而如何提供一种方式,帮助用户及时的获取到各配电变电站的运行状态,并根 据各回路的运行状态对各回路上的设备进行调整成为一个亟待解决的问题。

发明内容

本发明提供一种基于大型企业电力系统的电力数据处理方法和装置,用以解决现 有技术中的问题。

本发明的一方面是提供了一种基于大型企业电力系统的电力数据处理方法,包 括:

获取电力综合保护系统中的N条回路的电力数据,所述N条回路为总变电站分别与 N个配电变电站之间的回路,N为正整数;

采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或电力数据预 测,得到所述N条回路的电力数据处理结果;

根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路上的设备和线 路。

如上所述的方法中,所述获取电力综合保护系统中的N条回路的电力数据,包括:

获取第一预设时间段内电力综合保护系统中所述N条回路的视在功率数据;

相应的,所述采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或 电力数据预测,得到所述N条回路的电力数据处理结果,包括:

采用三倍标准差方法,分别去除各条回路的视在功率数据中的异常功率数据;

采用插值法,分别对各条回路的去除了异常功率数据的视在功率数据进行插值处 理,得到各条回路的功率插值曲线图;

获取所述各条回路的功率插值曲线图中的最大视在功率数据;

根据各条回路的最大视在功率数据,以及预设的各条回路的回路所带变压器容量 值,确定各条回路在所述第一预设时间段内的最大容量利用率,其中,所述最大容量利用率 为所述最大视在功率数据与所述回路所带变压器容量值的比值;

相应的,所述根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路 上的设备和线路,包括:

根据各条回路在所述第一预设时间段内的最大容量利用率,确定与最优的最大容 量利用率对应的回路,并确定与各条回路对应的各配电变电站的剩余容量值之后调整各条 回路上的设备数量。

如上所述的方法中,所述获取电力综合保护系统中的N条回路的电力数据,包括:

获取第二预设时间段内电力综合保护系统中所述N条回路的视在功率数据;

相应的,所述采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或 电力数据预测,得到所述N条回路的电力数据处理结果,包括:

根据各条回路的视在功率数据,以及预设的各条回路的功率界限值,筛选出大于 各功率界限值的各条回路的视在功率数据;

根据筛选后的各条回路的视在功率数据,确定各条回路的视在功率数据在各预设 第三时间段内的数据个数,以确定各条回路的日高峰期和年高峰期,所述日高峰期为数据 个数大于第一预设数据个数的小时,所述年高峰期为数据个数大于第二预设数据个数的月 份;

相应的,所述根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路 上的设备和线路,包括:

根据各条回路的日高峰期和/或年高峰期,确定各条回路上的设备和线路的检修 时间,以及各条回路上的设备的个数。

如上所述的方法中,所述获取电力综合保护系统中的N条回路的电力数据,包括:

获取第四预设时间段内电力综合保护系统中所述N条回路的视在功率数据、以及 与各视在功率数据对应的功率因数数据;

相应的,所述采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或 电力数据预测,得到所述N条回路的电力数据处理结果,包括:

根据各条回路的各视在功率数据qj,确定各条回路中的各视在功率数据的权重值

根据各条回路中的各视在功率数据的权重值tj,以及各条回路中的各视在功率数 据qj,分别确定各条回路的平均功率因数

其中,i∈[1,N],j∈[1,M],i、j为正整数,M为各条回路中的视在功率数据的个数;

相应的,所述根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路 上的设备和线路,包括:

若各条回路中的平均功率因数小于预设平均功率因数,则对小于预设平均功率因 数的回路进行设备优化处理、或增加无功补偿设备。

如上所述的方法中,所述获取电力综合保护系统中的N条回路的电力数据,包括:

第五预设时间段内电力综合保护系统中所述N条回路的电流数据;

相应的,所述采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或 电力数据预测,得到所述N条回路的电力数据处理结果,包括:

采用三倍标准差方法,分别去除各条回路的电流数据中的异常电流数据;

采用插值法,分别对各条回路的去除了异常电流数据的电流数据进行插值处理, 得到各条回路的电流插值曲线图;

获取所述各条回路的电流插值曲线图中的最大电流数据;

相应的,所述根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路 上的设备和线路,包括:

根据各条回路的最大电流数据,确定各条回路在第五预设时间段内负载状态,以 调整各条回路上的设备和线路;

或者,

所述获取电力综合保护系统中的N条回路的电力数据,包括:

获取第六预设时间段内电力综合保护系统中所述N条回路的负荷数据,所述负荷 数据包括电流数据和/或视在功率数据;

相应的,所述采用预设方法,分别对所述N条回路的电力数据进行电力数据分析或 电力数据预测,得到所述N条回路的电力数据处理结果,包括:

根据各条回路的负荷数据,生成各条回路的负荷数据历史序列组合,其中一条回 路的负荷数据历史序列组合中包括X个负荷数据历史序列,X为正整数;

采用离散傅里叶变换,对各条回路的负荷数据历史序列组合进行频域分析,生成 各条回路的频域分量序列组合,其中,一条回路的频域分量序列组合中包括了X个频域分量 序列,一个频域分量序列中包括了Y个与负荷数据对应的频域分量,Y为正整数;

采用时间序列自回归方法,对各条回路的频域分量序列组合进行预测处理生成各 条回路的预测时间的预测频域分量序列,预测频域分量序列中包括了Y个预测频率分量;

对各条回路的预测时间的预测频域分量序列,进行傅里叶反变换,生成各条回路 的预测时间的预测负荷数据序列,预测负荷数据序列中包括Y个预测负荷数据;

相应的,所述根据所述N条回路的电力数据处理结果,分别对应调整所述N条回路 上的设备和线路,包括:

根据各条回路的预测时间的预测负荷数据序列,确定各条回路的预测时间的电力 使用高峰期,以进行各条回路的预警处理。

本发明的另一方面是提供了一种基于大型企业电力系统的电力数据处理装置,包 括:

获取模块,用于获取电力综合保护系统中的N条回路的电力数据,所述N条回路为 总变电站分别与N个配电变电站之间的回路,N为正整数;

分析模块,用于采用预设方法,分别对所述N条回路的电力数据进行电力数据分析 或电力数据预测,得到所述N条回路的电力数据处理结果;

调整模块,用于根据所述N条回路的电力数据处理结果,分别对应调整所述N条回 路上的设备和线路。

如上所述的装置中,所述获取模块,具体用于:

获取第一预设时间段内电力综合保护系统中所述N条回路的视在功率数据;

相应的,所述分析模块,包括:

第一去除子模块,用于采用三倍标准差方法,分别去除各条回路的视在功率数据 中的异常功率数据;

第一插值子模块,用于采用插值法,分别对各条回路的去除了异常功率数据的视 在功率数据进行插值处理,得到各条回路的功率插值曲线图;

第一分析子模块,用于获取所述各条回路的功率插值曲线图中的最大视在功率数 据;

确定子模块,用于根据各条回路的最大视在功率数据,以及预设的各条回路的回 路所带变压器容量值,确定各条回路在所述第一预设时间段内的最大容量利用率,其中,所 述最大容量利用率为所述最大视在功率数据与所述回路所带变压器容量值的比值;

相应的,所述调整模块,具体用于:

根据各条回路在所述第一预设时间段内的最大容量利用率,确定与最优的最大容 量利用率对应的回路,并确定与各条回路对应的各配电变电站的剩余容量值之后调整各条 回路上的设备数量。

如上所述的装置中,所述获取模块,具体用于:

获取第二预设时间段内电力综合保护系统中所述N条回路的视在功率数据;

相应的,所述分析模块,包括:

筛选子模块,用于根据各条回路的视在功率数据,以及预设的各条回路的功率界 限值,筛选出大于各功率界限值的各条回路的视在功率数据;

高峰生成子模块,用于根据筛选后的各条回路的视在功率数据,确定各条回路的 视在功率数据在各预设第三时间段内的数据个数,以确定各条回路的日高峰期和年高峰 期,所述日高峰期为数据个数大于第一预设数据个数的小时,所述年高峰期为数据个数大 于第二预设数据个数的月份;

相应的,所述调整模块,具体用于:

根据各条回路的日高峰期和/或年高峰期,确定各条回路上的设备和线路的检修 时间,以及各条回路上的设备的个数。

如上所述的装置中,所述获取模块,具体用于:

获取第四预设时间段内电力综合保护系统中所述N条回路的视在功率数据、以及 与各视在功率数据对应的功率因数数据;

相应的,所述分析模块,包括:

权重生成子模块,用于根据各条回路的各视在功率数据qj,确定各条回路中的各 视在功率数据的权重值

因数生成子模块,用于根据各条回路中的各视在功率数据的权重值tj,以及各条 回路中的各视在功率数据qj,分别确定各条回路的平均功率因数其中,i∈ [1,N],j∈[1,M],i、j为正整数,M为各条回路中的视在功率数据的个数;

相应的,所述调整模块,具体用于:

若各条回路中的平均功率因数小于预设平均功率因数,则对小于预设平均功率因 数的回路进行设备优化处理、或增加无功补偿设备。

如上所述的装置中,所述获取模块,具体用于:

第五预设时间段内电力综合保护系统中所述N条回路的电流数据;

相应的,所述分析模块,包括:

第二去除子模块,用于采用三倍标准差方法,分别去除各条回路的电流数据中的 异常电流数据;

第二插值子模块,用于采用插值法,分别对各条回路的去除了异常电流数据的电 流数据进行插值处理,得到各条回路的电流插值曲线图;

第二分析子模块,获取所述各条回路的电流插值曲线图中的最大电流数据;

相应的,所述调整模块,具体用于:

根据各条回路的最大电流数据,确定各条回路在第五预设时间段内负载状态,以 调整各条回路上的设备和线路;

或者,

所述获取模块,具体用于:

获取第六预设时间段内电力综合保护系统中所述N条回路的负荷数据,所述负荷 数据包括电流数据和/或视在功率数据;

相应的,所述分析模块,包括:

序列生成子模块,用于根据各条回路的负荷数据,生成各条回路的负荷数据历史 序列组合,其中一条回路的负荷数据历史序列组合中包括X个负荷数据历史序列,X为正整 数;

频域生成子模块,用于采用离散傅里叶变换,对各条回路的负荷数据历史序列组 合进行频域分析,生成各条回路的频域分量序列组合,其中,一条回路的频域分量序列组合 中包括了X个频域分量序列,一个频域分量序列中包括了Y个与负荷数据对应的频域分量,Y 为正整数;

预测子模块,用于采用时间序列自回归方法,对各条回路的频域分量序列组合进 行预测处理生成各条回路的预测时间的预测频域分量序列,预测频域分量序列中包括了Y 个预测频率分量;

变换子模块,用于对各条回路的预测时间的预测频域分量序列,进行傅里叶反变 换,生成各条回路的预测时间的预测负荷数据序列,预测负荷数据序列中包括Y个预测负荷 数据;

相应的,所述调整模块,具体用于:

根据各条回路的预测时间的预测负荷数据序列,确定各条回路的预测时间的电力 使用高峰期,以进行各条回路的预警处理。

本发明通过获取电力综合保护系统中的N条回路的电力数据,N条回路为总变电站 分别与N个配电变电站之间的回路;采用预设方法,分别对N条回路的电力数据进行电力数 据分析或电力数据预测,得到N条回路的电力数据处理结果;根据N条回路的电力数据处理 结果,分别对应调整N条回路上的设备和线路。从而可以有效的利用电力综合保护系统保存 的各回路的电力数据,对这些电力数据进行数据分析、数据预测,从而可以有效的利用电力 数据的信息及时的获取到各配电变电站的运行状态、以及各条回路的运行状态,并对各回 路上的设备、线路进行调整;进而使得用户可以高效的管理各变电站以及各回路。

附图说明

图1为本发明实施例一提供的基于大型企业电力系统的电力数据处理方法的流程 图;

图2为本发明实施例二提供的基于大型企业电力系统的电力数据处理方法的流程 图;

图3为本发明实施例三提供的基于大型企业电力系统的电力数据处理方法的流程 图

图4为本发明实施例四提供的基于大型企业电力系统的电力数据处理方法的流程 图;

图5为本发明实施例五提供的基于大型企业电力系统的电力数据处理方法的流程 图;

图6为本发明实施例六提供的基于大型企业电力系统的电力数据处理方法的流程 图;

图7为本发明实施例七提供的基于大型企业电力系统的电力数据处理装置的结构 示意图;

图8为本发明实施例八提供的基于大型企业电力系统的电力数据处理装置的结构 示意图;

图9为本发明实施例九提供的基于大型企业电力系统的电力数据处理装置的结构 示意图;

图10为本发明实施例十提供的基于大型企业电力系统的电力数据处理装置的结 构示意图;

图11为本发明实施例十一提供的基于大型企业电力系统的电力数据处理装置的 结构示意图;

图12为本发明实施例十二提供的基于大型企业电力系统的电力数据处理装置的 结构示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

图1为本发明实施例一提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图1所示,本实施例的方法包括:

步骤101、获取电力综合保护系统中的N条回路的电力数据,N条回路为总变电站分 别与N个配电变电站之间的回路,N为正整数。

在本实施例中,具体的,在大型企业中,电力系统中具有一个总变电站和N个分别 与总变电站连接的配电变电站,从而总变电站与一个配电变电站连接而形成一个回路。在 总变电站中设置一个电力综合保护系统,电力综合保护系统负责保护继电保护等工作,同 时,电力综合保护系统存储了各变电站以及各条回路上的设备在运行过程中所产生的电力 数据,电力数据包括了视在功率数据、电流数据、电压数据等等。

从而总变电站与N个配电变电站之间具有N个回路,电力综合保护系统中会存储这 N条回路的电力数据。进而可以首先获取电力综合保护系统中保存的N条回路的电力数据。

步骤102、采用预设方法,分别对N条回路的电力数据进行电力数据分析或电力数 据预测,得到N条回路的电力数据处理结果。

在本实施例中,具体的,采用预设方法分别对N条回路的电力数据进行分析或预 测,从而分别对N条回路进行了电力数据的分析或预测。在对N条回路的电力数据进行分析 或预测之后,可以得到各条回路的电力数据处理结果。

举例来说,可以采用采样插值的方法,对各条回路的视在功率数据进行分析,从而 获取到各条回路的最大视在功率;可以采用人工智能的方法,对各条回路的电力数据进行 学习和训练,从而对各条回路的状态进行预测。

步骤103、根据N条回路的电力数据处理结果,分别对应调整N条回路上的设备和线 路。

在本实施例中,具体的,在步骤102之后,可以得到各条回路上的电力数据处理结 果。从而电力数据处理结果,可以看出当前回路的运行状态以及设备的运行状态,进而可以 分别调整各条回路上的设备、或者调整各条回路的线路,使得各条回路以及各条回路上的 设备可以正常运行。

本实施例通过获取电力综合保护系统中的N条回路的电力数据,N条回路为总变电 站分别与N个配电变电站之间的回路;采用预设方法,分别对N条回路的电力数据进行电力 数据分析或电力数据预测,得到N条回路的电力数据处理结果;根据N条回路的电力数据处 理结果,分别对应调整N条回路上的设备和线路。从而可以有效的利用电力综合保护系统保 存的各回路的电力数据,对这些电力数据进行数据分析、数据预测,从而可以有效的利用电 力数据的信息及时的获取到各配电变电站的运行状态、以及各条回路的运行状态,并对各 回路上的设备、线路进行调整;进而使得用户可以高效的管理各变电站以及各回路。

图2为本发明实施例二提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图2所示,在实施例一的基础上,步骤101具体包括:

获取第一预设时间段内电力综合保护系统中N条回路的视在功率数据。

在本实施例中,具体的,对N条回路进行分别的处理,首先获取第一预设时间段内 电力综合保护系统中各条回路的视在功率数据。第一预设时间段可以是一天、或者一个月、 或者几个月,也可以是某几个月的上旬。并且对于N条回路,各自的第一预设时间段可以相 同,也可以不同。

步骤102,包括:

步骤1021a、采用三倍标准差方法,分别去除各条回路的视在功率数据中的异常功 率数据。

在本实施例中,具体的,首先采用三倍标准差方法,对各条回路的视在功率数据分 别处理,从而可以分别去除各条回路的视在功率数据中的异常功率数据。进而可以剔除各 条回路上的异常数据,防止异常尖峰数据影响最大视在功率数据的选取。

步骤1022a、采用插值法,分别对各条回路的去除了异常功率数据的视在功率数据 进行插值处理,得到各条回路的功率插值曲线图。

在本实施例中,具体的,可以采用插值法,分别对各条回路的去除了异常功率数据 的视在功率数据进行插值处理。其中插值法的具体算法可以采用现有技术中任意一种插值 算法或几种插值算法的组合。对于数据采样间隔较大的视在功率数据,真实的视在功率数 据最大值可能在采样间隔之间,可以通过插值法补充采样间隔内的数据,减小所取视在功 率数据最大值和真实视在功率数据最大值的误差。通过插值方式,可以得到各条回路的功 率插值曲线图。

步骤1023a、获取各条回路的功率插值曲线图中的最大视在功率数据。

在本实施例中,具体的,确定各条回路的功率插值曲线图中的最大视在功率数据, 从而可以在插值处理后的视在功率数据中取最大值,得到各条回路的最大视在功率数据。

步骤1024a、根据各条回路的最大视在功率数据,以及预设的各条回路的回路所带 变压器容量值,确定各条回路在第一预设时间段内的最大容量利用率,其中,最大容量利用 率为最大视在功率数据与回路所带变压器容量值的比值。

在本实施例中,具体的,各条回路各自具有回路所带变压器容量值,从而将步骤 1023a中的各条回路的最大视在功率数据,与预设的各条回路的回路所带变压器容量值进 行比值,从而可以得到各条回路在第一预设时间段内的最大容量利用率。

步骤103具体包括:

根据各条回路在第一预设时间段内的最大容量利用率,确定与最优的最大容量利 用率对应的回路,并确定与各条回路对应的各配电变电站的剩余容量值之后调整各条回路 上的设备数量。

在本实施例中,具体的,根据步骤1024a中确定出的各条回路在第一预设时间段内 的最大容量利用率,可以确定出最优的最大容量利用率,并确定出与最优的最大容量利用 率对应的回路。同时,可以根据各条回路在第一预设时间段内的最大容量利用率,计算出与 各条回路对应的各配电变电站的剩余容量值,进而根据各配电变电站的剩余容量值,去调 整各条回路上的设备数量。

并且,可以根据各条回路在第一预设时间段内的最大容量利用率,确定新增用电 设备的电源来源,即新增用电设备与哪条回路连接;当需要增加负荷时,可根据分析得到的 各配电变电站的剩余容量值的情况,结合待增加负荷的用电时段和用电功率,统筹考虑用 电安全性、变压器效率和成本等因素,选择最合适的配变电站进行供电。

在本实施例中,可以采用matlab工具来实现各条回路的功率插值曲线图、各条回 路的最大视在功率数据的计算和显示。首先,将导入电力综合保护系统生成的报表导入到 matlab工具中,从而matlab工具自动获取到各条回路的视在功率数据,然后自动的对数据 进行异常数据处理和插值处理,然后将各条回路的功率插值曲线图显示到matlab工具的界 面上,最后将各条回路的最大容量利用率显示到matlab工具的界面上。用户可以通过 matlab工具选取不同的时间段对各条回路进行分析,点击matlab工具的界面上的“画图分 析”按钮,进入画图分析界面,然后用户可以选择选择不同回路、不同参数类型、不同数据类 型、不同时间段进行分析,matlab工具显示出用户所选时间段的各条回路的功率插值曲线 图、各条回路的最大容量利用率。

本实施例通过获取第一预设时间段内电力综合保护系统中N条回路的视在功率数 据,去除各条回路的视在功率数据中的异常功率数据,并对视在功率数据进行插值处理之 后,确定各条回路的最大视在功率数据,从而可以根据各条回路的最大视在功率数据,确定 各条回路的最大容量利用率。进而可以最大容量利用率,确定新增用电设备的电源来源,当 需要增加负荷时,可根据分析得到的各配电变电站的剩余容量,结合待增加负荷的用电时 段和用电功率,统筹考虑用电安全性、变压器效率和成本等因素,选择最合适的变电站供 电。

图3为本发明实施例三提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图3所示,在实施例一的基础上,步骤101具体包括:

获取第二预设时间段内电力综合保护系统中N条回路的视在功率数据。

在本实施例中,具体的,对N条回路进行分别的处理,首先获取第二预设时间段内 电力综合保护系统中各条回路的视在功率数据。第二预设时间段可以是一天、或者一个月、 或者几个月,也可以是某几个月的上旬,也可以是24小时里面的某几个小时。并且对于N条 回路,各自的第二预设时间段可以相同,也可以不同。

步骤102,包括:

步骤1021b、根据各条回路的视在功率数据,以及预设的各条回路的功率界限值, 筛选出大于各功率界限值的各条回路的视在功率数据。

在本实施例中,具体的,可以根据各条回路的视在功率数据的最大值以及最小值, 确定各条回路的功率界限值;可以将各条回路的视在功率数据分别求取平均值,将各自的 平均值作为各条回路的功率界限值。从而可以确定出各条回路的功率界限值。然后,筛选出 大于各功率界限值的各条回路的视在功率数据。

步骤1022b、根据筛选后的各条回路的视在功率数据,确定各条回路的视在功率数 据在各预设第三时间段内的数据个数,以确定各条回路的日高峰期和年高峰期,日高峰期 为数据个数大于第一预设数据个数的小时,年高峰期为数据个数大于第二预设数据个数的 月份。

在本实施例中,具体的,根据步骤1021b中筛选后的各条回路的视在功率数据,确 定各条回路的视在功率数据所在时刻,并确定在各个时刻里的视在功率数据的个数,进而 可以确定各条回路的视在功率数据在各第三时间段内的数据个数。比较各条回路的视在功 率数据在各第三时间段内的数据个数,从而可以确定出各条回路上的数据个数大于第一预 设数据个数的小时,各条回路上的数据个数大于第二预设数据个数的月份,进而得到各条 回路的日高峰期和年高峰期。

具体来说,对于某一条回路来说,筛选出在一天的各时间段内视在功率数据大于 当前回路的功率界限值的视在功率数据,并分别统计这些视在功率数据所在的时刻,即在 24小时里面的第几个小时里面,然后统计每个小时里面包含的视在功率数据的个数,确定 视在功率数据最多的某一个小时或某几个小时为当前回路的日高峰期。对于N条回路来说, 确定其日高峰期,都参照这一过程。

对于某一条回路来说,筛选出在一年的各月份中视在功率数据大于当前回路的功 率界限值的视在功率数据,并分别统计这些视在功率数据所在的月份,即在12个月里面的 第几个月里面,然后统计每个月里面包含的视在功率数据的个数,确定视在功率数据最多 的某一个月或某几个月为当前回路的年高峰期。对于N条回路来说,确定其年高峰期,都参 照这一过程。

步骤103,具体包括:

根据各条回路的日高峰期和/或年高峰期,确定各条回路上的设备和线路的检修 时间,以及各条回路上的设备的个数。

在本实施例中,具体的,根据各条回路的日高峰期,确定各条回路上的设备和线路 的在一天里的检修时间,以及各条回路在一天里的设备个数;根据各条回路的年高峰期,确 定各条回路上的设备和线路的在一年里的检修时间,以及各条回路在一年的各个月里的设 备个数。

在本实施例中,可以采用matlab工具来实现各条回路的日高峰期、年高峰期计算 和显示。首先,将导入电力综合保护系统生成的报表导入到matlab工具中,从而matlab工具 自动获取到各条回路的视在功率数据,然后自动的对数据进行处理,然后将各条回路的曲 线图显示到matlab工具的界面上,将各条回路的日高峰期、年高峰期显示到matlab工具的 界面上。用户可以通过matlab工具选取不同的时间段对各条回路进行分析,点击matlab工 具的界面上的“画图分析”按钮,进入画图分析界面,然后用户可以选择选择不同回路、不同 参数类型、不同数据类型、不同时间段进行分析,matlab工具显示出用户所选时间段的各条 回路的日高峰期、年高峰期。

本实施例通过筛选出大于各功率界限值的各条回路的视在功率数据,并根据筛选 后的各条回路的视在功率数据,确定各条回路的视在功率数据在各预设第三时间段内的数 据个数,以确定各条回路的日高峰期和年高峰期。从而可以各条回路的日高峰期和/或年高 峰期,掌握总变电站和各配变电站的在一天里、一年里的负荷高峰期,有利于更加有效的制 定停电检修计划,在一天里或一年里避开用电高峰,尽量在用电低谷期停电,从而可以在保 证正常用电的同时完成检修工作;还可以将部分用电设备的用电时段调整到用低谷期,同 时调整各条回路上的设备的个数,从而节省电费、提高用电安全性,同时可以消峰平谷。

图4为本发明实施例四提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图4所示,在实施例一的基础上,步骤101具体包括:

获取第四预设时间段内电力综合保护系统中N条回路的视在功率数据、以及与各 视在功率数据对应的功率因数数据。

在本实施例中,具体的,对N条回路进行分别的处理,首先获取第四预设时间段内 电力综合保护系统中各条回路的视在功率数据、与各视在功率数据对应的功率因数数据。 第四预设时间段可以是一天、或者一个月、或者几个月,也可以是某几个月的上旬,也可以 是24小时里面的某几个小时。并且对于N条回路,各自的第四预设时间段可以相同,也可以 不同。

步骤102,包括:

步骤1021c、根据各条回路的各视在功率数据qj,确定各条回路中的各视在功率数 据的权重值

在本实施例中,具体的,根据各条回路的各视在功率数据qj,进行求和计算,计算 出各条回路中的各视在功率数据的权重值进而将各条回路中的各视在功率 数据占当前回路的所有视在功率数据之和的比重作为权重,从而在各条回路中,对于各条 回路的一个视在功率数据,可以确定出一个权重值。其中,j∈[1,M],i、j为正整数,M为各条 回路中的视在功率数据的个数。各条回路中的视在功率数据的个数M,可以相同,也可以不 同。

步骤1021c、根据各条回路中的各视在功率数据的权重值tj,以及各条回路中的各 视在功率数据qj,分别确定各条回路的平均功率因数其中,i∈[1,N],j∈[1, M],i、j为正整数,M为各条回路中的视在功率数据的个数。

在本实施例中,具体的,将各条回路中的各视在功率数据的权重值tj,以及各条回路中 的各视在功率数据qj相乘之后求和,从而可以确定各条回路的平均功率因数其 中,i∈[1,N],i为正整数。

步骤103,具体包括:

若各条回路中的平均功率因数小于预设平均功率因数,则对小于预设平均功率因 数的回路进行设备优化处理、或增加无功补偿设备。

在本实施例中,具体的,各条回路具有各自的预设平均功率因数,各条回路具有的 预设平均功率因数可以相同,也可以不同,根据实际情况而设定。若各条回路中的平均功率 因数小于当前回路的预设平均功率因数,从而小于预设平均功率因数的回路的平均功率因 数较低,需要对其进行设备优化处理、或增加无功补偿设备,以提高功率因数。

在本实施例中,可以采用matlab工具来实现各条回路的平均功率因数计算和显 示。首先,将导入电力综合保护系统生成的报表导入到matlab工具中,从而matlab工具自动 获取到各条回路的视在功率数据、以及与各视在功率数据对应的功率因数数据,然后自动 的对数据进行处理,然后将各条回路的曲线图显示到matlab工具的界面上,将各条回路的 平均功率因数、以及小于预设平均功率因数的回路显示到matlab工具的界面上。用户可以 通过matlab工具选取不同的时间段对各条回路进行分析,点击matlab工具的界面上的“画 图分析”按钮,进入画图分析界面,然后用户可以选择选择不同回路、不同参数类型、不同数 据类型、不同时间段进行分析,matlab工具显示出用户所选时间段的各条回路的平均功率 因数、以及小于预设平均功率因数的回路。

本实施例通过根据各条回路的各视在功率数据,确定各条回路的平均功率因数, 从而可以根据平均功率因数可以掌握各回路的用电状况,对平均功率因数较低的回路可以 进行用电设备优化或者增加无功补偿设备,以提高功率因数,减少电能的浪费。

图5为本发明实施例五提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图5所示,在实施例一的基础上,步骤101具体包括:

获取第五预设时间段内电力综合保护系统中N条回路的电流数据。

在本实施例中,具体的,对N条回路进行分别的处理,首先获取第五预设时间段内 电力综合保护系统中各条回路的电流数据。第五预设时间段可以是一天、或者一个月、或者 几个月,也可以是某几个月的上旬,也可以是24小时里面的某几个小时。并且对于N条回路, 各自的第五预设时间段可以相同,也可以不同。

步骤102,包括:

步骤1021d、采用三倍标准差方法,分别去除各条回路的电流数据中的异常电流数 据。

在本实施例中,具体的,首先采用三倍标准差方法,对各条回路的电流数据分别处 理,从而可以分别去除各条回路的电流数据中的异常电流数据。进而可以剔除各条回路上 的异常数据,防止异常尖峰数据影响最大电流数据的选取。

步骤1022d、采用插值法,分别对各条回路的去除了异常电流数据的电流数据进行 插值处理,得到各条回路的电流插值曲线图。

在本实施例中,具体的,可以采用插值法,分别对各条回路的去除了异常电流数据 的电流数据进行插值处理。其中插值法的具体算法可以采用现有技术中任意一种插值算法 或几种插值算法的组合。对于数据采样间隔较大的电流数据,真实的电流最大值可能在采 样间隔之间,可以通过插值法补充采样间隔内的数据,减小所取电流最大值和真实电流最 大值的误差。通过插值方式,可以得到各条回路的电流插值曲线图。

步骤1023d、获取各条回路的电流插值曲线图中的最大电流数据。

在本实施例中,具体的,确定各条回路的电流插值曲线图中的最大电流数据,从而 可以在插值处理后的电流数据中取最大值,得到各条回路的最大电流数据。

步骤103,具体包括:

根据各条回路的最大电流数据,确定各条回路在第五预设时间段内负载状态,以 调整各条回路上的设备和线路。

在本实施例中,具体的,根据各条回路的最大电流数据,可以确定出各条回路在第 六预设时间段内负载状态,即各个设备的状态,进而可以根据各条回路的负载状态,去调整 各条回路上的设备的个数、线路状态、并设置设备的各项参数。

具体来说,可以根据各条回路的最大电流数据,确定出各条回路在第六预设时间 段内负载状态,此时的第六预设时间段可以是第五预设时间段,从而可以得到各条回路当 前的负载状态。可以根据各条回路的最大电流数据,确定出各条回路在第六预设时间段内 负载状态,此时的第六预设时间段可以是第五预设时间段之后的未发生的时间段,例如第 二天、或者下一个月,从而可以预测出各条回路未来的负载状态。

在本实施例中,可以采用matlab工具来实现各条回路的最大电流数据的计算和显 示。首先,将导入电力综合保护系统生成的报表导入到matlab工具中,从而matlab工具自动 获取到各条回路的电流数据,然后自动的对数据进行处理,然后将各条回路的电流插值曲 线图、最大电流数据显示到matlab工具的界面上。用户可以通过matlab工具选取不同的时 间段对各条回路进行分析,点击matlab工具的界面上的“画图分析”按钮,进入画图分析界 面,然后用户可以选择选择不同回路、不同参数类型、不同数据类型、不同时间段进行分析, matlab工具显示出用户所选时间段的各条回路的电流插值曲线图、最大电流数据。

本实施例通过获取各条回路的电流数据,去除各条回路的电流数据中的异常电流 数据,并对电流数据进行插值处理之后,确定各条回路的最大电流数据;从而可以根据各条 回路的最大电流数据,确定各条回路的负载状态。进而可以获知各条回路在各时刻的负载 状态,根据各条回路的最大电流可以确定各回路的线路是否有过载危险,预防电力事故的 发生,同时也可以作为增加负荷可行性的依据。

图6为本发明实施例六提供的基于大型企业电力系统的电力数据处理方法的流程 图,如图6所示,在实施例一的基础上,步骤101具体包括:

获取第六预设时间段内电力综合保护系统中N条回路的负荷数据,负荷数据包括 电流数据和/或视在功率数据。

在本实施例中,具体的,对N条回路进行分别的处理,首先获取第六预设时间段内 电力综合保护系统中各条回路的负荷数据,负荷数据包括电流数据和/或视在功率数据。第 六预设时间段可以是一天、或者一个月、或者几个月,也可以是某几个月的上旬,也可以是 24小时里面的某几个小时。并且对于N条回路,各自的第六预设时间段可以相同,也可以不 同。

步骤102,包括:

步骤1021e、根据各条回路的负荷数据,生成各条回路的负荷数据历史序列组合, 其中一条回路的负荷数据历史序列组合中包括X个负荷数据历史序列,X为正整数。

在本实施例中,具体的,根据各条回路的负荷数据,生成各条回路的负荷数据历史 序列组合。对于一条回路来说,一条回路的负荷数据历史序列组合中包括X个负荷数据历史 序列,一个负荷数据历史序列中具有Y个负荷数据;其中,X、Y为正整数,各负荷数据历史序 列中的负荷数据的个数可以相同或不同。对于各条回路来说,各自生成一个负荷数据历史 序列组合,其中各条回路中的X可以相同,也可以不同。

举例来说,对于N条回路,取了各条回路在某30天的24小时里的各个小时的负荷数 据,从而可以生成各条回路的负荷数据历史序列组合;对于一条回路来说,负荷数据历史序 列组合中包括30个负荷数据历史序列,1天的负荷数据构成1个负荷数据历史序列,1个负荷 数据历史序列中具有24个负荷数据。

步骤1022e、采用离散傅里叶变换,对各条回路的负荷数据历史序列组合进行频域 分析,生成各条回路的频域分量序列组合,其中,一条回路的频域分量序列组合中包括了X 个频域分量序列,一个频域分量序列中包括了Y个与负荷数据对应的频域分量,Y为正整数。

在本实施例中,具体的,采用离散傅里叶变换,分别对各条回路的负荷数据历史序 列组合进行频域分析,从而可以生成各条回路的频域分量序列组合。对于一条回路来说,一 条回路的频域分量序列组合中包括了X个频域分量序列,一个频域分量序列中包括了Y个频 域分量,频域分量分别与负荷数据相对应,Y为正整数。

举例来说,对于一条回路来说,负荷数据历史序列组合中包括30个负荷数据历史 序列,1天的负荷数据构成1个负荷数据历史序列,1个负荷数据历史序列中具有24个负荷数 据;经过离散傅里叶变换之后,一条回路的频域分量序列组合中包括了30个频域分量序列, 1个频域分量序列中包括了24个频域分量。

步骤1023e、采用时间序列自回归方法,对各条回路的频域分量序列组合进行预测 处理生成各条回路的预测时间的预测频域分量序列,预测频域分量序列中包括了Y个预测 频率分量。

在本实施例中,具体的,采用采用时间序列自回归方法,对各条回路的频域分量序 列组合进行预测处理;从而生成了各条回路的预测时间的预测频域分量序列。对于一条回 路来说,对各条回路的频域分量序列组合进行预测处理时,可以将一条回路的频域分量序 列组合中的各频域分量序列进行组合分析,从而得到一个预测频域分量序列,在一个预测 频域分量序列中包括了Y个预测频率分量。

举例来说,对于一条回路来说,一条回路的频域分量序列组合中包括了30个频域 分量序列,1个频域分量序列中包括了24个频域分量,其中,30个频域分量序列分别代表了 30天里的频域分量序列;采用时间序列自回归方法进行预测处理的时候,将各个频域分量 序列中的第一个频域分量进行组合分析得到一个第一个预测频率分量,将各个频域分量序 列中的第二个频域分量进行组合分析得到一个第二个预测频率分量,将各个频域分量序列 中的第三个频域分量进行组合分析得到一个第三个预测频率分量,以此类推,直至将各个 频域分量序列中的第24个频域分量进行组合分析得到一个第24个预测频率分量;进而得到 一条回路的预测时间的一个预测频域分量序列,预测频域分量序列中包括了24个预测频率 分量,并且,预测时间为未来的一天。

步骤1024e、对各条回路的预测时间的预测频域分量序列,进行傅里叶反变换,生 成各条回路的预测时间的预测负荷数据序列,预测负荷数据序列中包括Y个预测负荷数据。

在本实施例中,具体的,对各条回路的预测时间的预测频域分量序列,进行傅里叶 反变换,从而可以得到各条回路的预测时间的一个预测负荷数据序列,对于一条回路来说, 预测负荷数据序列中包括Y个预测负荷数据。

举例来说,对于一条回路来说,一条回路的预测时间的一个预测频域分量序列,预 测频域分量序列中包括了24个预测频率分量,并且,预测时间为未来的一天;进行傅里叶反 变换,可以得到当前回路在未来一天里的一个预测负荷数据序列,预测负荷数据序列中包 括24个预测负荷数据,从而得到未来一天里的各小时的预测负荷数据。

步骤103,具体包括:

根据各条回路的预测时间的预测负荷数据序列,确定各条回路的预测时间的电力 使用高峰期,以进行各条回路的预警处理。

在本实施例中,具体的,根据得到的各条回路的预测时间的预测负荷数据序列,可 以得到各条回路的预测时间的电力使用高峰期,从而便于管理用户对各条回路的预警处 理。

在本实施例中,可以采用matlab工具来实现各条回路的预测时间的预测负荷数据 序列的计算和显示。首先,将导入电力综合保护系统生成的报表导入到matlab工具中,从而 matlab工具自动获取到各条回路的负荷数据,然后自动的对数据进行处理,然后将各条回 路的预测时间的预测负荷数据序列显示到matlab工具的界面上。用户可以通过matlab工具 选取不同的时间段对各条回路进行分析,点击matlab工具的界面上的“数据预测”按钮,进 入数据预测界面,然后用户可以选择选择不同回路、不同参数类型、不同数据类型、不同时 间段进行分析,matlab工具显示出用户所选时间段的各条回路的预测时间的预测负荷数据 序列、即得到各条回路的预测曲线。

本实施例通过将各条回路的负荷数据,组合成各条回路的负荷数据历史序列组 合,采用离散傅里叶变换对各条回路的负荷数据历史序列组合进行频域分析,在采用时间 序列自回归方法,对各条回路的频域分量序列组合处理后生成各条回路的预测时间的预测 频域分量序列,再对各条回路的预测时间的预测频域分量序列进行傅里叶反变换之后,可 以得到各条回路的预测时间的预测负荷数据序列。从而各条回路的预测时间的预测负荷数 据序列可以构成各自的负荷预测曲线,根据各条回路的负荷预测曲线可以获知各条回路在 未来的预测时间内的电力使用情况有所预知,可以获知各条回路的电力使用高峰,进而便 于管理用户进行各条回路的电力高峰预警,避免电力事故发生。

图7为本发明实施例七提供的基于大型企业电力系统的电力数据处理装置的结构 示意图,如图7所示,本实施例提供的基于大型企业电力系统的电力数据处理装置,包括:

获取模块71,用于获取电力综合保护系统中的N条回路的电力数据,N条回路为总 变电站分别与N个配电变电站之间的回路,N为正整数;

分析模块72,用于采用预设方法,分别对N条回路的电力数据进行电力数据分析或 电力数据预测,得到N条回路的电力数据处理结果;

调整模块73,用于根据N条回路的电力数据处理结果,分别对应调整N条回路上的 设备和线路。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例一 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过获取电力综合保护系统中的N条回路的电力数据,N条回路为总变电 站分别与N个配电变电站之间的回路;采用预设方法,分别对N条回路的电力数据进行电力 数据分析或电力数据预测,得到N条回路的电力数据处理结果;根据N条回路的电力数据处 理结果,分别对应调整N条回路上的设备和线路。从而可以有效的利用电力综合保护系统保 存的各回路的电力数据,对这些电力数据进行数据分析、数据预测,从而可以有效的利用电 力数据的信息及时的获取到各配电变电站的运行状态、以及各条回路的运行状态,并对各 回路上的设备、线路进行调整;进而使得用户可以高效的管理各变电站以及各回路。

图8为本发明实施例八提供的基于大型企业电力系统的电力数据处理装置的结构 示意图,在实施例七的基础上,如图8所示,本实施例提供的基于大型企业电力系统的电力 数据处理装置,获取模块71,具体用于:

获取第一预设时间段内电力综合保护系统中N条回路的视在功率数据;

相应的,分析模块72,包括:

第一去除子模块721a,用于采用三倍标准差方法,分别去除各条回路的视在功率 数据中的异常功率数据;

第一插值子模块722a,用于采用插值法,分别对各条回路的去除了异常功率数据 的视在功率数据进行插值处理,得到各条回路的功率插值曲线图;

第一分析子模块723a,用于获取各条回路的功率插值曲线图中的最大视在功率数 据;

确定子模块724a,用于根据各条回路的最大视在功率数据,以及预设的各条回路 的回路所带变压器容量值,确定各条回路在第一预设时间段内的最大容量利用率,其中,最 大容量利用率为最大视在功率数据与回路所带变压器容量值的比值;

相应的,调整模块73,具体用于:

根据各条回路在第一预设时间段内的最大容量利用率,确定与最优的最大容量利 用率对应的回路,并确定与各条回路对应的各配电变电站的剩余容量值之后调整各条回路 上的设备数量。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例二 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过获取第一预设时间段内电力综合保护系统中N条回路的视在功率数 据,去除各条回路的视在功率数据中的异常功率数据,并对视在功率数据进行插值处理之 后,确定各条回路的最大视在功率数据,从而可以根据各条回路的最大视在功率数据,确定 各条回路的最大容量利用率。进而可以最大容量利用率,确定新增用电设备的电源来源,当 需要增加负荷时,可根据分析得到的各配电变电站的剩余容量,结合待增加负荷的用电时 段和用电功率,统筹考虑用电安全性、变压器效率和成本等因素,选择最合适的变电站供 电。

图9为本发明实施例九提供的基于大型企业电力系统的电力数据处理装置的结构 示意图,在实施例七的基础上,如图9所示,本实施例提供的基于大型企业电力系统的电力 数据处理装置,获取模块71,具体用于:

获取第二预设时间段内电力综合保护系统中N条回路的视在功率数据;

相应的,分析模块72,包括:

筛选子模块721b,用于根据各条回路的视在功率数据,以及预设的各条回路的功 率界限值,筛选出大于各功率界限值的各条回路的视在功率数据;

高峰生成子模块722b,用于根据筛选后的各条回路的视在功率数据,确定各条回 路的视在功率数据在各预设第三时间段内的数据个数,以确定各条回路的日高峰期和年高 峰期,日高峰期为数据个数大于第一预设数据个数的小时,年高峰期为数据个数大于第二 预设数据个数的月份;

相应的,调整模块73,具体用于:

根据各条回路的日高峰期和/或年高峰期,确定各条回路上的设备和线路的检修 时间,以及各条回路上的设备的个数。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例三 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过筛选出大于各功率界限值的各条回路的视在功率数据,并根据筛选 后的各条回路的视在功率数据,确定各条回路的视在功率数据在各预设第三时间段内的数 据个数,以确定各条回路的日高峰期和年高峰期。从而可以各条回路的日高峰期和/或年高 峰期,掌握总变电站和各配变电站的在一天里、一年里的负荷高峰期,有利于更加有效的制 定停电检修计划,在一天里或一年里避开用电高峰,尽量在用电低谷期停电,从而可以在保 证正常用电的同时完成检修工作;还可以将部分用电设备的用电时段调整到用低谷期,同 时调整各条回路上的设备的个数,从而节省电费、提高用电安全性,同时可以消峰平谷。

图10为本发明实施例十提供的基于大型企业电力系统的电力数据处理装置的结 构示意图,在实施例七的基础上,如图10所示,本实施例提供的基于大型企业电力系统的电 力数据处理装置,获取模块71,具体用于:

获取第四预设时间段内电力综合保护系统中N条回路的视在功率数据、以及与各 视在功率数据对应的功率因数数据;

相应的,分析模块72,包括:

权重生成子模块721c,用于根据各条回路的各视在功率数据qj,确定各条回路中 的各视在功率数据的权重值

因数生成子模块722c,用于根据各条回路中的各视在功率数据的权重值tj,以及 各条回路中的各视在功率数据qj,分别确定各条回路的平均功率因数其中,i ∈[1,N],j∈[1,M],i、j为正整数,M为各条回路中的视在功率数据的个数;

相应的,调整模块73,具体用于:

若各条回路中的平均功率因数小于预设平均功率因数,则对小于预设平均功率因 数的回路进行设备优化处理、或增加无功补偿设备。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例四 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过根据各条回路的各视在功率数据,确定各条回路的平均功率因数, 从而可以根据平均功率因数可以掌握各回路的用电状况,对平均功率因数较低的回路可以 进行用电设备优化或者增加无功补偿设备,以提高功率因数,减少电能的浪费。

图11为本发明实施例十一提供的基于大型企业电力系统的电力数据处理装置的 结构示意图,在实施例七的基础上,如图11所示,本实施例提供的基于大型企业电力系统的 电力数据处理装置,获取模块71,具体用于:

第五预设时间段内电力综合保护系统中N条回路的电流数据;

相应的,分析模块72,包括:

第二去除子模块721d,用于采用三倍标准差方法,分别去除各条回路的电流数据 中的异常电流数据;

第二插值子模块722d,用于采用插值法,分别对各条回路的去除了异常电流数据 的电流数据进行插值处理,得到各条回路的电流插值曲线图;

第二分析子模块723d,获取各条回路的电流插值曲线图中的最大电流数据;

相应的,调整模块73,具体用于:

根据各条回路的最大电流数据,确定各条回路在第五预设时间段内负载状态,以 调整各条回路上的设备和线路。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例五 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过获取各条回路的电流数据,去除各条回路的电流数据中的异常电流 数据,并对电流数据进行插值处理之后,确定各条回路的最大电流数据;从而可以根据各条 回路的最大电流数据,确定各条回路的负载状态。进而可以获知各条回路在各时刻的负载 状态,根据各条回路的最大电流可以确定各回路的线路是否有过载危险,预防电力事故的 发生,同时也可以作为增加负荷可行性的依据。

图12为本发明实施例十二提供的基于大型企业电力系统的电力数据处理装置的 结构示意图,在实施例七的基础上,如图12所示,本实施例提供的基于大型企业电力系统的 电力数据处理装置,获取模块71,具体用于:

获取第六预设时间段内电力综合保护系统中N条回路的负荷数据,负荷数据包括 电流数据和/或视在功率数据;

相应的,分析模块72,包括:

序列生成子模块721e,用于根据各条回路的负荷数据,生成各条回路的负荷数据 历史序列组合,其中一条回路的负荷数据历史序列组合中包括X个负荷数据历史序列,X为 正整数;

频域生成子模块722e,用于采用离散傅里叶变换,对各条回路的负荷数据历史序 列组合进行频域分析,生成各条回路的频域分量序列组合,其中,一条回路的频域分量序列 组合中包括了X个频域分量序列,一个频域分量序列中包括了Y个与负荷数据对应的频域分 量,Y为正整数;

预测子模块723e,用于采用时间序列自回归方法,对各条回路的频域分量序列组 合进行预测处理生成各条回路的预测时间的预测频域分量序列,预测频域分量序列中包括 了Y个预测频率分量;

变换子模块724e,用于对各条回路的预测时间的预测频域分量序列,进行傅里叶 反变换,生成各条回路的预测时间的预测负荷数据序列,预测负荷数据序列中包括Y个预测 负荷数据;

相应的,调整模块73,具体用于:

根据各条回路的预测时间的预测负荷数据序列,确定各条回路的预测时间的电力 使用高峰期,以进行各条回路的预警处理。

本实施例的基于大型企业电力系统的电力数据处理装置可执行本发明实施例六 提供的基于大型企业电力系统的电力数据处理方法,其实现原理相类似,此处不再赘述。

本实施例通过将各条回路的负荷数据,组合成各条回路的负荷数据历史序列组 合,采用离散傅里叶变换对各条回路的负荷数据历史序列组合进行频域分析,在采用时间 序列自回归方法,对各条回路的频域分量序列组合处理后生成各条回路的预测时间的预测 频域分量序列,再对各条回路的预测时间的预测频域分量序列进行傅里叶反变换之后,可 以得到各条回路的预测时间的预测负荷数据序列。从而各条回路的预测时间的预测负荷数 据序列可以构成各自的负荷预测曲线,根据各条回路的负荷预测曲线可以获知各条回路在 未来的预测时间内的电力使用情况有所预知,可以获知各条回路的电力使用高峰,进而便 于管理用户进行各条回路的电力高峰预警,避免电力事故发生。

本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通 过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程 序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或 者光盘等各种可以存储程序代码的介质。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管 参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可 以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换; 而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和 范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号