首页> 中国专利> 一种具有火花等离子体烧结的端塞的SiC基体燃料包壳管

一种具有火花等离子体烧结的端塞的SiC基体燃料包壳管

摘要

提供用于在核反应堆中容纳核燃料(34)的端帽管状陶瓷复合体的方法,包括提供管状陶瓷复合体(40)的步骤,提供至少一个端塞(14、46、48),向管状陶瓷复合体的端部施加至少一种端塞材料,向端塞和管状陶瓷复合体施加电极,和在等离子体烧结装置(10,50)中施加电流从而提供密闭性密封的管(52)。本发明还提供由该方法制成的密封管。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-08-25

    未缴年费专利权终止 IPC(主分类):G21C 3/10 专利号:ZL2014800506878 申请日:20140818 授权公告日:20171215

    专利权的终止

  • 2018-06-22

    专利权的转移 IPC(主分类):G21C3/10 登记生效日:20180605 变更前: 变更后: 变更前: 变更后: 申请日:20140818

    专利申请权、专利权的转移

  • 2017-12-15

    授权

    授权

  • 2016-10-12

    实质审查的生效 IPC(主分类):G21C3/10 申请日:20140818

    实质审查的生效

  • 2016-06-22

    公开

    公开

说明书

相关申请的交叉引用

本申请要求2013年9月16日提交的美国专利申请序列号 No.14/027,299的权益,通过引用将其并入本文。

背景技术

1.技术领域

本发明涉及一种由碳化硅(在此称为SiC)制成的燃料棒包壳管, 而不管包壳设计的结构(单式、在内部上具有单式SiC的双联式、以 及由SiC纤维和外部上的SiC基体制成的复合体、等等),其具有火 花等离子体烧结密封端塞。

2.相关技术说明

在典型的核反应堆,例如压水(PWR)、重水(如CANDU)或沸水 反应堆(BWR)中,该反应堆芯包括大量的燃料组件,每个组件由多个 长的燃料元件或燃料棒构成。每个燃料棒包含核燃料裂变材料,例如 二氧化铀(UO2)、二氧化钚(PuO2)和氮化铀(UN)和/或硅化铀(U3Si2) 中的至少一种;以及在芯块之上或之内的可能的添加剂,例如硼或硼 化合物,钆或钆化合物等,其通常为核燃料芯块的堆跺体形式,尽管 也使用环形或颗粒形式。该燃料棒具有充当裂变材料的容器的包壳。 所述燃料棒在阵列中被分组在一起,将该阵列组织成在芯中提供足以 支持高速率核裂变的中子通量,因而以热的形式释放大量的能量。将 冷却剂如水泵送通过该芯,以提取在芯中产生的热量用于产生有用的 工作。燃料组件在尺寸和设计方面根据芯的所需尺寸和反应器的尺寸 而改变。

燃料棒上的包壳通常由锆(Zr)与高达约2wt%的其它金属如Nb、 Sn、Fe和Cr制成。例如Biancheria等,Kapil和Lahoda教导了这 样的锆合金包壳管(分别是美国专利No.3427222;5075075;以及 7139360)。燃料棒/包壳具有在各端处的端帽和压紧装置例如金属弹 簧以保持核燃料芯块堆跺体就位。图1示出了这种类型的现有技术设 计,显示了一串燃料芯块10、锆基包壳12、弹簧压紧装置14和端帽 16。

存在一些与金属包壳燃料棒相关的问题。如果与可能存在于前文 所提及的冷却水中的碎屑接触,它们可磨损。在严酷的条件下诸如" 超出设计基础"事故中,金属包壳可在超过1093℃(2000°F)下与 蒸汽进行放热反应。这些保护核燃料的锆包壳金属可在"冷却剂损失" 事故中失去强度,在该事故中反应器温度可高达1204℃(2200°F), 且由于燃料棒中的内部裂变气体而膨胀。此外,持续性的应用工业需 求已经将反应器操作温度和包壳的辐射暴露推至极限。

所有这些促使考虑使用实验性陶瓷类材料,例如由Maruyama等 人(美国专利No.6246740),Zender(美国专利No.5391428),Hanzawa 等人(美国专利No.5338576);Feinroth(美国专利No.5182077和 美国专利公开No.2006/0039524A1),Easler等人(美国专利公开号 2007/0189952Al);和无关地Korton(美国专利No.6697448)教导 的碳化硅(SiC)单式、纤维以及它们的组合作为金属燃料棒的完整或 部分替代。

必须在核工业中寻找绝对正确的组合以使通常脆性的陶瓷显著更 加柔性,从而在完全失效条件下释放应力/温度/压力。一种可能性是 使用实验性SiC纤维增强的SiC复合体;高纯β或α相化学计量比 的碳化硅的二层或三层管,其覆盖有浸渍了β相SiC的连续β相化学 计量比的碳化硅纤维的中心复合体层,以及在三层的情况下覆盖有细 粒度的β相碳化硅的外保护层。建议预压该纤维组分,将纤维形成丝 束,而丝束反向缠绕重叠;其中纤维涂覆有小于1微米的SiC或碳或 石墨或氮化硼从而提供允许滑动的弱接头,所有这些获得更好的应变 抵抗性和柔性。Feinroth等人在美国专利公开No.2006/0039524 Al(通过引用将其并入本文)中描述了这样的核燃料管,以及使用公知 的化学气相渗透(CVI)、聚合物浸渍和热解(PIP)进行的基体致密 化。还建议在氧化铝基体中的氧化铝(Al2O3)纤维作为替代物。

如在此使用的,术语"陶瓷复合体"意指且定义为所有上述的包括 SiC和Al2O3的复合型结构。

令人惊奇的是,几乎没有提到关于这种陶瓷复合体的端塞。事实 上,迄今为止,找到附接端塞和确保陶瓷复合体包壳例如碳化硅燃料 棒包壳的密闭性的密封技术仍是很难的任务,这是由于对于这样的接 合接头提出的各种要求:

-在正常工作期间和之后确保机械强度、预期的操作事件、很少发 生的事故和限制性错误;

-在辐射和核反应堆的特定腐蚀性环境下确保端塞和包壳接头的 密闭性;

-使接合工艺适应全负载的包壳(其具有燃料芯块和压紧装置)。 此外,端塞和密封技术必须允许在一般高达300psi的压力下用氦或 其它导热回填气对燃料棒进行加压;

-允许接合工艺使经济规模成为商业化。

最近已经研究了几种密封技术;但是到目前为止,它们中没有一 个被证明在核环境中是成功的,而在此其为必要的。因此,存在多种 提出的密封技术,它们使用各种化合物(除了SiC)来密封SiC部件 (例如钛基制剂、Al-Si制剂),包括钎焊和其它技术,例如:V Chaumat等人,美国专利申请公开No.2013/0004325A1;A.Gasse, 美国专利公开2003/0038166;A.Gasse等人,美国专利5975407; F.Montgomery等人(美国专利5447683);G.A.Rossi等人,(美 国专利No.4925608);和McDermid,"Thermodynamicbrazingalloy designforjoiningsiliconcarbide"J.Am.Ceram.Soc.Vol.74, No.8,pp.1855-1860,1991。

自从2007年在SiC接合技术中已有爆炸性的研究;例如:C.H. Henager,Jr.等人,"CoatingsandjoiningforSiCandSiC compositesfornuclearenergysystems,"JournalofNuclear Materials.367,370(2007)1139-1143;M.Ferraris等人, "JoiningofmachinedSiC/SiCcompositesforthermonuclear fusionreactors."JournalofNuclearMaterials.375 (2008)410-415;J.Li等人,"AhightemperatureTi-Sieutectic brazeforjoiningSiC,"MaterialsLetters.62(2008),3135-3138; W,Tian,"ReactionjoiningofSiCceramicsusingTiB2-based composites,"JournaloftheEuropeanCeramicSociety.30(2010) 3203-3208andM.Ferraris等人,"JoiningofSiC-basedmaterials fornuclearenergyapplications,"JournalofNuclear Materials.417(2011)379-382。这些文章尝试评价手段的效用以确 保越来越高的输出。该效用需要越来越大的应力设计和材料,这对于 满足世界能量的需要是经济上必要的。

上述陶瓷模型不再是实验性的,且通常显示具有高的机械强度, 且认为能实现对于核反应堆所需的气密性;然而,这些接合技术没能 表现出对于在核反应堆环境中存活典型的燃料棒寿命所必要的腐蚀和 辐射抵抗性。Munir等描述的其它密封技术(如实验性火花等离子体 烧结,下文称为"SPS"),“Theeffectofelectricfieldandpressure onthesynthesisandconsolidationofmaterialsherein incorporatedbyreference,describes:areviewofthespark plasmasinteringmethod,"J.MaterSci.41(2006)763,777。 它们不使用额外的化学化合物;但是使用该方法的经济性大规模生产 迄今仍是难以捉摸的且仍保持为挑战。熟知的用于许多商业领域的技 术-热等静压(HIP),也可以用于将SiC接合到SiC,但前面提到的 HIP(ARossi等人,美国专利4925608)在密封性核燃料棒的易碎环 境中不实用,这是由于长的烧结循环和高的温度(约1700℃)和极高 的压力,且不适用于批量生产。所需要的是,用陶瓷或金属的端帽密 封该管状陶瓷复合体的商业上可行的接合方法。

本发明的主要目的是提供一种制造高强度、密闭性密封、商业上 有用和可行的端塞密封件的方法,和使用陶瓷复合体管作为容纳燃料 芯块的基础的耐受剧烈核环境中的辐射的方法。

发明内容

为了解决上述问题并提供主要目标,本发明涉及一种提供加端帽 的管状陶瓷复合体的方法,该复合体可以填充有核燃料,该方法包括 以下步骤:

(1)提供具有管壁和圆周轴以及单独的至少一种端塞材料的管状 陶瓷复合体;

(2)将至少一种端塞材料,优选精密机加工的含砂(sanded)材 料施加于管状陶瓷组合物的至少一端,该端塞具有在塞子/包壳接头处 接触管状陶瓷复合体的外侧和内侧;

(3)将至少一个初级电极施加于至少一个端塞的外侧;

(4)任选将至少一个次级电极施加于管状陶瓷复合体的外侧;和

(5)将电流施加于存在的电极,使用火花等离子体烧结以在塞子 /包壳接头中提供至多1500℃/min的快速升温;其中在端塞与包壳管 端接头处的接头温度为环境温度-2500℃。

以更详细的优选形式,本发明还涉及一种包括以下步骤的方法:

(1)提供具有管壁和圆周轴以及单独的至少一种端塞材料的管状 陶瓷复合体;

(2)将至少一个端塞,优选精密机加工的含砂陶瓷或金属端塞组 合物或陶瓷前体组合物材料施加于管状陶瓷组合物的至少一端,该端 塞具有在塞子/包壳接头处接触管状陶瓷复合体的外侧和内侧;

(3)将至少一个初级电极施加于至少一个陶瓷端塞的外侧;

(4)任选将至少一个次级圆周电极施加于管状陶瓷复合体的外 侧;和

(5)将电流施加于存在的电极,使用火花等离子体烧结技术以在 塞子/包壳接头处提供至多1500℃/min的快速升温;其中在端塞与包 壳管端的管接头处的接头温度为环境温度-2500℃,在0.001MPa至 50.0MPa的压力下施加0.01-6.0分钟从而将管密闭地密封于至少一个 端帽。平均电流为200A-800A(安培),而峰值脉冲电压是2-4V(伏 特)并且时间优选为5分钟至60分钟。

陶瓷端帽优选是与陶瓷复合体相同的或是与陶瓷复合体相同的材 料的前体,它在加热时将转化成该材料。

除了本文公开和发现的特定临界范围,通常已知的火花等离子体 工艺(SPS工艺)的操作参数优选是:以优选100℃/min至1000℃/min, 最优选1000℃/min的快速率,在1.0至6.0分钟和5.0MPa至10MPa 下,在塞子/包壳间隙/接头施加至多1500℃/min的温度上升,且至多 到2500℃,优选1800-2150℃,最优选2100℃的峰值温度。如图2对 图3-4中所示,圆周电极24是可选但优选的。图2的较简单工艺只使 用两个端电极22。两种电施加都是有用的。此外,优选在步骤(4) 之后施加4MPa-20MPa的接合压力,保持时间为5分钟-60分钟;在步 骤(1)或步骤(2)后,可通过钻入端塞,在压力下引入气体和在50-500 psi下密封端塞管,将内部气体例如氦引入/注入/泵入管中。

优选的端帽优选用SiC制成。也可使用金属端帽例如锆或锆合金 或其它金属。一组三元碳化物或氮化物也可用作端帽材料,例如 Ti2AlC、Ti4AlN3、Ti3AlC2、Ti2SiC、Ti3SiC2、Ti3SnC2、Zr2AlC、Zr2TiC、 Zr2SnC、Nb2SnC、Nb3SiC2、(ZrxNb1-x)2AlC,其中0<x<1。

最优选的陶瓷复合体或其前体和端帽由SiC复合体构成,其包含 在内部上的单式SiC和在SiC基体上的至少一个SiC纤维层。最优选 地,将端帽接头/接触点和陶瓷复合体端进行抛光。陶瓷复合体管可以 为2英尺到18英尺(60.96-546.64cm)长以适应宽范围的反应堆设 计。

附图的简要说明

当结合附图阅读时,可以从优选实施方案的以下描述获得本发明 的进一步理解,其中:

图1为含有燃料芯块、保持弹簧和端帽的现有技术的锆合金燃料 棒的放大纵向截面图;

图2示出了在双重操作中在没有次级电极的陶瓷复合体的两端上 密封端帽的SPS工艺的横截面图;

图3示出了对于SPS工艺的SPS工艺横截面图,该SPS工艺使用 次级圆周电极一次圆周密封一端;

图4示出了SPS工艺的横截面图,该SPS工艺使用次级圆周电极 一次中心内部和顶部密封一个端帽;以及

图5,其最好地显示了本发明,示出了该方法的总体示意性流程 图。

优选实施方案的描述

当前和标准燃料包壳由充当裂变产物阻挡体和防止放射性材料释 放到环境中的各种锆合金制成。虽然锆合金具有所需的中子特性,而 且在过去在正常工作条件下在冷却剂中具有足够的强度和抗氧化性, 但是它们在大于1200℃的超出设计基础温度下迅速氧化。由于锆蒸气 反应是放热和快速的,因此在该反应中产生氢,已提出和实验性测试 新材料如碳化硅(SiC),其在高于1200℃的温度下具有比锆合金显 著更好的抗氧化性。与由锆合金包壳制成的包壳相比,使用先进的SiC 基材料(不再是完全实验阶段),能大大改善燃料的失效温度>600℃, 这本身就是极好的。本申请描述了一种密封方法,其可以在升高的温 度下在核反应堆中操作陶瓷核燃料管;在由上文描述和定义的"陶瓷复 合体"制成的燃料棒管上形成可以在>1200℃下工作的耐辐射的端部密 封。

最优选地,如前文所限定的"陶瓷复合体"燃料棒管包含陶瓷SiC 材料的多个层,包括致密的单式SiC、SiC-SiC复合体。每一层具有有 助于满足包壳的性能要求的特定功能。在一个"陶瓷复合体"包壳的优 选变体中,包壳的内层由致密的单式SiC构成,其具有极低的渗透性。 该层的主要功能是容纳裂变产物。为了改善可靠性,包壳可具有至多 三个单式SiC层以提供裂变产物的多余容纳。通过由热解碳制成的中 间层分隔各层,该热解碳是类似于石墨的材料,但因在其生产中的缺 陷其在一些石墨烯片之间具有一些共价键,或由其它材料例如氮化硼 或碳化硼制成,其防止形成连续的SiC物从而抑制裂缝从一层扩展到 另一层。下一层包壳结构是SiC-SiC陶瓷复合体。

SiC-SiC陶瓷复合体受到张力,保持单式层受压缩,从而在高的 热通量期间内抵消跨包壳的径向应力梯度。SiC-SiC复合体可以适应 这一应力梯度,这归因于比致密单式SiC高的拉伸应力极限。此外, 可以通过调节增强性纤维结构设计该复合层。例如,不同的编织或缠 绕角度可在轴向和环向方向中影响相对的包壳强度。这允许设计最合 适的结构以容纳在包壳寿命期间所预期的应力的余量。外部SiC-SiC 层具有在内部单式SiC层失效情况下保持包壳结构完整性的主要功 能。再次,将所有这些定义在先前定义的术语"陶瓷复合体"中。可以 添加附加的SiC层以提供附加特征,例如增加的抗腐蚀性、降低的压 降、增加的热传递或其他属性。再次,将所有这些定义在先前定义的 术语"陶瓷复合体"中。

在本申请中,具体适用于这种特定技术的大大改进的方法包括参 数改进的电场辅助烧结基技术。以所公开的发现的特定性有用操作参 数使用等离子体烧结。对于本申请有用的是将SiC端塞在其接头处接 合到管状陶瓷;优选SiC基燃料棒管,并以至多500psi的背充压力 的密封该管;即,在图2-4示出了与本发明相关的火花等离子体烧结 (SPS)的变体。

替代的方法可以使用具有相对面的塞子,其要么在管内要么在管 外。SPS方法具有高达1500℃/min的加热速率,且能在几分钟内将两 个SiC片或预制件/前体接合在一起。接头处的所希望的局部温度范围 为1400℃-2150℃,保温时间范围为0.01min-60min,优选5分钟-60 分钟,压力范围为0.001-50MPa,优选5MPa-20MPa。

现在开始看图,图2示出了使用SPS工艺(火花等离子体烧结), 利用火花等离子体烧结装置11,这里使用初级电极和任选次级电极, 将水泥、熔丝、陶瓷端帽施加于陶瓷复合体。还将惰性气体如He引入 管中,从而通过熟知的方法提供50psi-500psi的内部背压,所述熟 知的方法包括钻入端塞,引入气体和对包含端塞的至少一个陶瓷复合 体管12补给燃料,该陶瓷复合体管用于将核燃料芯块保持在核反应堆 中,置于至少一个端帽14之间,该端帽14与陶瓷复合体管的顶部16 和内部18以及陶瓷复合体管的圆周外部20咬合。可以将糊料施加于 端帽14或表面16和18以提供进一步密封能力。将至少两个电极附接 于端帽/管,每个电极22邻近且接触至少一个端帽。最优选地,将端 帽和管端之间的接头26抛光以确保更好的粘接性。

可以在真空或环境温度或在具有50℃直至1500℃的温度的炉中 将烧结装置10加压。还示出了压力控制/电源装置30,动力线32,燃 料芯块34和芯块保持装置,这里是弹簧36。端帽优选是SiC,和优选 的端帽包封空间38为0.75英寸(1.905cm)-1.25英寸(3.175厘米)。

图3使用与图2相同的数字,但使用任选的圆周电极从而一次密 封一端,图3描述了其中端帽具有顶部和圆周接触方法,和图4描述 了其中端帽具有顶部和内部接触的方法。在这些方法中,至少一个电 极24邻接和接触或者围绕该陶瓷复合体管。图5示出了本发明的方法, 其中40,提供具有内部与外部管壁和圆周轴的管状陶瓷复合体;该陶 瓷复合体附接于42至少一种端塞组合物,优选是与该陶瓷复合体相同 的组合物:端帽44覆盖陶瓷复合体的顶部、内部和侧部,这是完整而 复杂的密封端帽;或端帽46仅覆盖如图3所示的陶瓷复合体管的顶部 和侧部;或端帽48覆盖如图4所示的陶瓷复合体管的顶部和内部。可 以使用或不使用糊料将端塞置于管端上,且将电极施加于管和端塞, 所有这些施加于火花等离子体烧结装置(11,50)从而将固化的端塞 密闭地牢固密封于陶瓷复合体52的端部。

此外,可以具有下列特征:

·使用由SiC制成的2-18英尺(60.96-548.64cm)长的端部密 封的燃料棒管,其由至少一个且至多三个理论密度>95%的单式SiC内 层,由SiCf/-SiC复合体制成的层和任选的沉积SiC外层构成;

·使用上述用单式SiC或金属端塞在一端或两端处密封的燃料棒 管,使用火花等离子体烧结方法,在接合接头处具有或不具有SiC前 体糊料材料,使用其它陶瓷复合体糊料,金属钎焊材料,含玻璃的材 料例如SiO2-Al2O3,或金属钎焊化合物例如Si和Al;

·其中端塞包含圆形槽,其宽度为燃料棒管厚度的1.001-1.1倍, 深度为0.05-.5英寸(0.127-1.27厘米),其中燃料棒管是密封的;

·其中端塞安装于燃料棒管的内部或外部到0.05至1英寸 (0.127-2.54cm)的深度,从而提供相对的面,其中燃料棒管是密封 的;

·其中端塞组合物/前体材料而非管是在这些方法之一中制成的: 化学气相沉积(CVD)、冷挤压然后无压烧结、HIP或增材制造方法例 如3D打印和激光辅助沉积/烧结;

·其中SiC前体材料的密度为理论值的35%-60%;

·其中将端塞和燃料棒管的相对接头抛光到镜面光洁度,或者用 320粒度或更细的金刚石纸抛光;以及

·其中燃料棒管的内径为0.25-0.60英寸(0.635-1.524cm), 管的厚度范围为0.01-0.15英寸(0.025-0.381cm)。

本发明提供了一种引人注目的并且可能是未来主义的方法来商业 和实际地生产半柔性的、受控的、灾难中能够挽救生命的密封的2-18 英尺(60.96-548.64cm)长的半柔性的燃料棒管,其由单式SiC和 SiC纤维基体或其它"陶瓷复合体"构成,其回充有至多500psi的氦 或其他气体。

燃料棒管优选具有双联式结构,该结构由内部单式SiC层或多层 和外部SiC/SiC优选复合体层构成。用由SiC或其他材料制成的端塞 在一端或两端处密封该管。使用电场辅助烧结技术例如火花等离子体 烧结方法将管和端塞接合在一起。可以在环境条件或在真空中或在加 压的室中或加热的室中进行该接合。密封管是气密的且在至多10000 psi的压差下在至多1500℃持续至少6年不会变形。

实施例

用0.026英寸(0.066cm)SiC复合体层缠绕由12英尺(365.76 厘米)长的挤压化学计量比的α相核反应堆SiC管构成的"陶瓷复合体 ",该管用于在反应堆中容纳核燃料,其内径为0.32英寸(0.8128cm) 且壁厚为0.015英寸(0.0381cm),密度为SiC理论密度的95%,该 SiC复合体层由6层化学计量比的β相SiC纤维缠绕物构成,且利用 化学气相渗透而渗透有β相的化学计量比SiC至复合体的净密度大于 SiC理论密度的80%。

用挤压的化学计量比的α相端塞密封该"陶瓷复合体",所述端塞 具有高度抛光的内部和上部管密封面,如图4所示,其是利用熟知和 前文定义的等离子体火花烧结在充有375psi的氦的腔室中在环境条 件下施加的。加热速率为200℃/分钟,接合压力为5MPa,在塞子/管 的接合接头处的峰值温度为2100℃,在峰值温度下的保持时间为5分 钟至60分钟。

这提供了一种根据前述的调整的火花等离子体烧结工艺成功地将 端帽施加到陶瓷复合体SiC管的方法,从而对PSA密封端管提供了标 准核压力和温度,并且对于弯曲和开裂基本具有回弹性。

尽管详细描述了本发明的特定实施方案,但本领域技术人员可以 理解,可以根据本公开的整体教导开发各种对于这些细节的改变和替 代。因此,所公开的特定实施方案对于本发明的范围只是说明性的而 不是限制性的,本发明的范围由所附权利要求及其任何和所有等同物 的完全范围所给出。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号