首页> 中国专利> 利用来自低和中地球轨道的信号进行基于空间的认证

利用来自低和中地球轨道的信号进行基于空间的认证

摘要

提出了使用中地球轨道(MEO)卫星和低地球轨道(LEO)卫星进行基于位置认证的系统和方法。基于在客户端设备处从至少一个MEO卫星接收的至少一个客户端接收的MEO卫星信号以及在客户端设备处从至少一个LEO卫星接收的至少一个客户端接收的LEO卫星信号认证客户端设备的位置。

著录项

  • 公开/公告号CN104704749A

    专利类型发明专利

  • 公开/公告日2015-06-10

    原文格式PDF

  • 申请/专利权人 波音公司;

    申请/专利号CN201380053071.1

  • 申请日2013-09-12

  • 分类号

  • 代理机构北京康信知识产权代理有限责任公司;

  • 代理人梁丽超

  • 地址 美国伊利诺斯州

  • 入库时间 2023-12-18 09:28:35

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-26

    授权

    授权

  • 2015-11-11

    实质审查的生效 IPC(主分类):H04B7/185 申请日:20130912

    实质审查的生效

  • 2015-06-10

    公开

    公开

说明书

技术领域

本公开的实施方式整体涉及计算机网络和网络安全。更具体地,本公 开的实施方式涉及用于基于位置认证的卫星系统。

背景技术

卫星信号(诸如全球导航卫星系统(GNSS)信号)的大部分功率在 其中卫星信号经常受阻的市内和室内环境中可能被损耗。阻挡卫星信号使 得市内和室内环境覆盖区域弱化,并且功率损耗降低了在低信噪比(SNR) 环境下的性能。低SNR环境下的降低性能可能阻止或者最小化认证系统 验证位置计算或者基于位置的断言是真实的能力。

发明内容

提供了使用中地球轨道(MEO)卫星和低地球轨道(LEO)卫星的基 于位置认证的系统和方法。基于在客户端设备处从至少一个MEO卫星接 收的至少一个客户端接收的MEO卫星信号和在客户端设备处从至少一个 LEO卫星接收的至少一个客户端接收的LEO卫星信号估计客户端设备处 于某一位置的可能性。接收包括在从MEO卫星接收的信号的MEO特征 提取时间段内的采样的客户端MEO信号特征(signature,签名)。构建 包括在从MEO卫星接收的信号的MEO特征提取时间段(signature time  period,签名时间段)内的采样的服务器MEO信号特征。接收包括在从 LEO卫星接收的信号的LEO特征提取时间段内的采样的客户端LEO信号 特征。构建包括在LEO卫星的信号的LEO特征提取时间段内的采样的服 务器LEO信号特征。基于客户端MEO信号特征与服务器MEO信号特征 的比较以及客户端LEO信号特征与服务器LEO信号特征的比较认证客户 端设备的位置。

以这种方式,本公开的实施方式提供了针对欺骗和伪造(诸如靠近和 离岸攻击)的保护以及在其中卫星信号经常受阻的市内和室内环境中的较 强覆盖。

在实施方式中,使用中地球轨道(MEO)卫星和低地球轨道(LEO) 卫星的基于位置认证的方法接收包括在从MEO卫星接收的客户端接收的 MEO卫星信号的MEO特征提取时间段内的采样的客户端MEO信号特征。 该方法进一步构建包括在从MEO卫星接收的服务器接收的MEO卫星信 号的MEO特征提取时间段内的采样的服务器MEO信号特征。该方法进 一步将客户端MEO信号特征与服务器MEO信号特征进行比较以提供 MEO比较结果。该方法进一步接收包括在从LEO卫星接收的客户端接收 的LEO卫星信号的LEO特征提取时间段内的采样的客户端LEO信号特 征。该方法进一步构建包括在从LEO卫星接收的至少一个服务器LEO卫 星信号的LEO特征提取时间段内的采样的服务器LEO信号特征。该方法 进一步将客户端LEO信号特征与服务器LEO信号特征进行比较以提供 LEO比较结果。该方法进一步基于MEO比较结果和LEO比较结果认证 客户端设备的位置。

在另一实施方式中,使用中地球轨道(MEO)卫星和低地球轨道(LEO) 卫星的基于位置认证的系统包括认证模块,认证模块基于在客户端设备处 从MEO卫星接收的客户端接收的MEO卫星信号和在客户端设备处从 LEO卫星接收的客户端接收的LEO卫星信号认证客户端设备所处的位置。

在进一步的实施方式中,非瞬时性计算机可读存储介质包括用于基于 客户端位置认证的计算机可执行指令,计算机可执行指令在客户端设备处 从MEO卫星接收MEO卫星信号,以提供客户端接收的MEO卫星信号。 计算机可执行指令进一步在客户端设备处从LEO卫星接收LEO卫星信 号,以提供客户端接收的LEO卫星信号。计算机可执行指令进一步构建 包括在客户端接收的MEO卫星信号的MEO特征提取时间段内的采样的 客户端MEO信号特征。计算机可执行指令进一步构建包括在客户端接收 的LEO卫星信号的LEO特征提取时间段内的采样的客户端LEO信号特 征。计算机可执行指令将客户端MEO信号特征、客户端LEO信号特征、 MEO特征提取时间段内的采样、以及LEO特征提取时间段内的采样进一 步发送至服务器以认证客户端设备的位置。

提供该发明内容以用简化的形式介绍构思选择,下面在具体实施方式 中进一步讨论构思选择。该发明内容并不旨在确认所要保护的主题的关键 特征或者基本特征,也不旨在用作帮助确定所要求保护主题的范围。

附图说明

当结合下列附图考虑时,通过参考具体实施方式和权利要求可获得对 本公开的实施方式的更完整的理解,在附图中,类似的参考标号表示遍及 附图的相似元件。提供附图以便于理解本公开,而不是限制本公开的宽度、 范围、广度、或者适用性。附图不一定按比例绘制。

图1是根据本公开的实施方式的用于认证宣称的位置的示例性无线通 信系统的示图。

图2是导航卫星接收器的示例性简化功能框图的示图。

图3是示出室内和市区环境能够阻挡导航卫星信号的方式的示例性无 线通信环境的示图。

图4是示出中地球轨道(MEO)中的导航卫星的信号结构的示例图的 示图。

图5是示出城市中的MEO卫星(GPS)和低地球轨道(LEO)卫星 (铱星(Iridium)TM)的视线矢量的示例图的示图。

图6是示出根据本公开的实施方式的基于来自MEO、LEO、以及陆 地源(terrestrial source)的信号的认证系统的示例图的示图。

图7是示出在一个铱星TM卫星覆盖范围内的天线波束的示例图的示 图。

图8是示出来自铱星TM卫星的四个天线波束的信噪比(C/N0)相对 时间的示例图的示图。

图9是示出可由特征伪造装置(signature counterfeiter)执行的就近特 征伪造攻击(proximate signature counterfeiting attack)的示例图的示图。

图10是示出根据本公开的实施方式的使用MEO卫星信号击败就近特 征伪造攻击的示例图的示图。

图11是可由特征伪造装置激活的针对离岸(offshore)特征伪造攻击 的仿真系统的示例性功能框图的示图。

图12是示出根据本公开的实施方式的如何使用LEO卫星信号击败离 岸特征伪造攻击的图10中所示的针对离岸特征伪造攻击的仿真系统的示 例性功能框图的示图。

图13是可由特征伪造装置激活的基于就近信号捕捉和离岸处理的针 对混合攻击特征伪造的仿真系统的示例性功能框图的示图。

图14是根据本公开的实施方式的基于空间的认证系统的示例性功能 框图的示图。

图15是示出根据本公开的实施方式的基于位置的认证过程的示例性 流程图的示图。

图16是示出根据本公开的实施方式的基于客户端位置的认证过程的 示例性流程图的示图。

具体实施方式

以下具体实施方式在本质上为示例性的并且并不旨在限制本公开或 本申请以及本公开的实施方式的使用。仅作为实例提供具体设备、技术、 以及应用。本文所描述的实施例的变形对本领域普通技术人员将是显而易 见的,并且在不背离本公开的实质和范围的情况下,本文所限定的一般原 理可应用于其他实施例和应用。而且,并不旨在受之前的技术领域、背景 技术、发明内容、或者以下具体实施方式中所呈现的明确或者默示理论的 约束。本公开应符合与权利要求一致的范围,并且并不局限于本文所描述 和示出的实施例。

本文中,可以功能和/或逻辑块部件以及各个处理步骤的方式描述本公 开的实施方式。应当认识到,可通过被配置为执行具体功能的任意数目的 硬件、软件、和/或固件部件来实施这种块部件。为简便起见,在本文中并 不详细描述与通信系统、网络协议、全球定位系统、卫星、以及系统的其 他功能方面(和系统的各个操作部件)相关的传统技术和部件。

在本文中,在非限制性应用的背景下描述了本公开的实施方式,即, 用于移动电话应用的认证系统。然而,本公开的实施方式并不局限于这种 移动电话应用,并且本文所描述的技术还可用于其它应用中。例如,实施 方式可应用于桌面计算机、膝上型计算机或者笔记本计算机、iPodTM、 iPadTM、蜂窝电话、个人数字助理(PDA)、主机、服务器、路由器、互 联网协议(IP)节点、服务器、Wi-Fi节点、客户端、或者可期望或适合 用于给定应用或者环境的任何其他类型的专用或者通用计算设备。

在阅读本说明书之后,对本领域普通技术人员显而易见的是,下列是 本公开的实施例和实施方式并且并不旨在根据这些实施例操作。并且在不 背离本公开的示例性实施方式的范围的情况下,可利用其它实施方式并且 可做出改变。

本公开的实施方式提供一种认证系统,其为将在客户端设备(客户端) (其位于诸如城市建筑物的室内的低信噪比(SNR)环境下)处接受的卫 星信号提供足够的接收信号强度。在一种实施方式中,将来自低地球轨道 (LEO)卫星和中地球轨道(MEO)卫星的信号组合(combine)。在另 一实施方式中,通过来自陆地源的编码信号增强MEO和/或LEO卫星信 号。

通过组合LEO信号与MEO信号,环境克服伪造来自客户端的数字特 征的可能的尝试。伪造装置可使用的两种实例攻击策略包括:就近攻击和 离岸攻击。与现有解决方案相比较,由于极大地提高了伪造攻击的成本和 复杂度,所以本公开的实施方式提供一种更为安全的认证系统。例如,本 公开的实施方式可迫使就近攻击装置(proximate attacker)在受害方位置 的数十米范围内部署攻击接收器。又例如,本公开的实施方式可迫使离岸 攻击装置(offshore attacker)在受害方位置的数十千米(或者甚至数百米) 内部署复杂的接收器。

而且,实施方式要求数字特征包含来自两个重叠天线波束的编码。如 此,本实施方式可迫使离岸攻击装置位于受害方位置的数十千米内。如果 交易价值较高,则认证服务器可请求当两个波束在宣称位置重叠时产生的 第二特征。这种重叠情形可发生在几十秒内。

在其他实施方式中,与MEO卫星信号与LEO卫星信号结合使用安全 /秘密特征的陆地源。地面发射器的覆盖地面天线范围可能非常小(几百米) 并且因此迫使攻击接收器非常接近于受害方位置。

图1是根据本公开实施方式的基于卫星信号认证宣称的位置的示例性 无线通信系统100(系统100)的示图。系统100可包括运行在中地球轨 道(MEO)108中的MEO卫星102、104和106、运行在低地球轨道(LEO) 116中的LEO卫星110、112和114、可选的陆地广播站122(陆地源122)、 包括卫星接收器200的客户端126、包括卫星接收器200的认证服务器128、 以及主机网络194。

在一种实施方式中,将来自MEO 108中的MEO卫星102、104和106 中的至少一个的MEO卫星信号118与来自LEO 116中的LEO卫星110、 112和114中的至少一个的LEO卫星信号120组合。

在另一实施方式中,通过来自陆地源122的编码陆地信号160增强来 自MEO 108中的MEO卫星102-106中的至少一个的MEO卫星信号118 以及来自LEO 116中的LEO卫星110-114中的至少一个的LEO卫星信号 120。

LEO卫星110-114可包括例如但不限于来自铱星TM、铱星TM NEXT、 全球星星群的卫星、或者可用于与位置、导航、或者时间有关的应用的其 他卫星。

MEO卫星102-106可包括例如但不限于全球导航卫星系统(GNSS) 卫星、全球定位系统(GPSTM)卫星、格罗纳斯(GLONASSTM)卫星、 北斗导航系统(COMPASSTM)卫星、伽利略TM卫星、或者可用于与位置、 导航、或者时间有关的应用的其他卫星。

陆地源122可包括蜂窝电话基站、无线或者有线访问点、或者其他陆 地源。

在客户端126的客户端接收器模块200处可处理来自MEO卫星102 的MEO卫星信号118,以确定客户端126的位置130、速率和时间。还可 处理来自LEO卫星110(例如,子午仪卫星导航)的LEO卫星信号120 以产生对客户端126的位置130、速率和时间的估计。

可使用通过来自MEO卫星102-106中的至少一个的MEO卫星信号 118以及来自LEO卫星110-114中的至少一个的LEO卫星信号120可获 得的测量来估测客户端126的位置130。对位置130的估计基于信号源的 最小集(set)。系统100应用于具有几个MEO卫星加上几个LEO卫星的 相似系统(具有或不具有高质量的用户时钟)。可使用任意合适的数学技 术来基于例如信号源的最小集估计位置130。

系统100实现基于空间的室内和市区认证。系统100被配置为与可见 卫星的稀疏集(sparse set)一起工作;一个MEO卫星102和一个LEO卫 星110是足够的。如果一个MEO卫星102和一个LEO卫星110为可见的, 则如果第三维度(例如,高度)已知并且用户设备具有足够精确度的时钟, 则系统100能够即时估计并且认证二维位置。

客户端126(客户端设备126)可包括卫星接收器200(客户端接收器 模块200)和客户端特征提取模块170。客户端126被配置为如上所述地 基于经由客户端天线198接收MEO卫星信号118和/或LEO卫星信号120 中的至少一个来跟踪和定位客户端126。

客户端接收器模块200被配置为在客户端126处从至少一个MEO卫 星102接收至少一个MEO卫星信号118,以提供至少一个客户端接收的 MEO卫星信号146。客户端接收器模块200还被配置为在客户端设备126 处从至少一个陆地源122接收至少一个陆地信号160,以提供至少一个客 户端接收的陆地信号162。客户端接收器模块200还被配置为在客户端设 备126处从至少一个LEO卫星110接收至少一个LEO卫星信号120,以 提供至少一个客户端接收的LEO卫星信号158。

客户端特征提取模块170被配置为构建客户端MEO信号特征164(其 包括在至少一个客户端接收的MEO卫星信号146的MEO特征提取时间 段内的采样)。客户端特征提取模块170还被配置为构建客户端LEO信 号特征166(其包括在至少一个客户端接收的LEO卫星信号158的LEO 特征提取时间段内的采样)。客户端特征提取模块170还被配置为构建客 户端陆地信号特征168,客户端陆地信号特征168包括至少一个客户端接 收的陆地信号162的客户端陆地时间窗(window)。本文中,客户端接收 的MEO卫星信号146、客户端接收的LEO卫星信号158和客户端接收的 陆地信号162可被统称为客户端接收信号146、158、162。此外,本文中, 客户端MEO信号特征164、客户端LEO信号特征166和客户端陆地信号 特征168可被统称为特征信号164、166和168、客户端特征集190、或者 位置特征190。

客户端陆地信号特征168从客户端设备126数据传输至认证服务器 128,该数据传输可从客户端以单个宽带特征或者多个独立数据包的形式 发送信号特征。至少一个陆地源122还可将单个或者多个数据传输发送至 认证服务器128。

客户端126可支持许多消费者应用。例如,在城市建筑物内室内,许 多金融交易利用蜂窝电话作为客户端126。客户端126可包括有线或者无 线通信设备,诸如,但不限于,桌面计算机、膝上型计算机或者笔记本计 算机、iPodTM、iPadTM、蜂窝电话、个人数字助理(PDA)、主机、服务 器、路由器、互联网协议(IP)节点、服务器、Wi-Fi节点、或者包括能 够接收客户端接收的MEO卫星信号146的卫星接收器200并且可期望和 适合用于给定应用或者环境的任何其他类型的专用或者通用计算设备。

认证服务器128被配置为接收或者估计位置130的特征信号164、166 和168(客户端特征集190)。认证服务器128可经由无线通信链路136、 无线通信信道138、或者其组合接收客户端特征集190或者在认证服务器 128处本地地估计客户端特征集。认证服务器128可包括卫星接收器200 (服务器接收器模块200)、服务器客户端数据模块172、服务器数据模 块174、相关(correlation)模块152、以及认证模块154。

服务器接收器模块200还可被配置为在认证服务器128(服务器设备 128)处接收至少一个MEO卫星信号118,以提供至少一个服务器接收的 MEO卫星信号156。服务器接收器模块200还被配置为在服务器设备128 处接收至少一个LEO卫星信号120,以提供至少一个服务器LEO卫星信 号148。服务器接收器模块200还可被配置为在服务器设备128处接收至 少一个陆地信号160,以提供至少一个服务器接收的陆地信号196。本文 中,服务器LEO卫星信号148、服务器接收的MEO卫星信号156、以及 服务器接收的陆地信号196可被统称为服务器接收信号148、156、196。

客户端接收的LEO卫星信号158可包括从LEO卫星110和112两个 中接收的两个客户端接收的LEO卫星信号(例如,图7中的重叠区域712)。 服务器LEO卫星信号149可包括从LEO卫星110和112两个中接收的两 个服务器接收的LEO卫星信号(例如,图7中的重叠区域712)。

服务器客户端数据模块172被配置为接收客户端MEO信号特征164 (其包括在从MEO卫星102-106中的至少一个接收的至少一个客户端接 收的MEO卫星信号146的MEO特征提取时间段内的采样)。服务器客 户端数据模块172还被配置为接收客户端LEO信号特征166(其包括在从 至少一个LEO卫星110接收的至少一个客户端接收的LEO卫星信号158 的LEO特征提取时间段内的采样)。服务器客户端数据模块172还被配 置为接收信号特征168,信号特征168包括从至少一个陆地源122接收的 至少一个客户端接收的陆地信号162的时间窗。

服务器数据模块174被配置为构建服务器MEO信号特征176(其包 括在从至少一个MEO卫星102接收的至少一个服务器接收的MEO卫星 信号156的MEO特征提取时间段内的采样)。服务器数据模块174还被 配置为构建服务器LEO信号特征178(其包括在至少一个LEO卫星110 的至少一个服务器LEO卫星信号148的LEO特征提取时间段内的采样)。 该至少一个服务器LEO卫星信号148可被发送至至少一个LEO卫星110 或者可从至少一个LEO卫星110接收该至少一个服务器LEO卫星信号 148。服务器数据模块174还可被配置为构建服务器陆地信号特征180,服 务器陆地信号特征180包括从至少一个陆地源122接收的至少一个服务器 接收的陆地信号196的客户端陆地时间窗。服务器数据模块174可操作为 利用各种类型的卫星信号(例如,来自铱星–LEO卫星、MEO卫星等)来 工作,并且可使用各种数目的服务器数据模块174。例如,可存在用于接 收的每个信号类型的独立服务器数据模块174。

相关模块152(比较模块152)被配置为比较客户端MEO信号特征 164与服务器MEO信号特征176,以提供MEO比较结果182。相关模块 152还被配置为比较客户端LEO信号特征166与服务器LEO信号特征 178,以提供LEO比较结果184。在实施方式中,相关模块152还可被配 置为比较客户端陆地信号特征168与服务器陆地信号特征180,以提供陆 地比较结果186。

认证模块154被配置为基于MEO比较结果182和LEO比较结果184 认证客户端设备126的位置130。在一种实施方式中,认证模块154被配 置为基于MEO比较结果182、LEO比较结果184、以及陆地比较结果186 认证客户端设备126的位置130。认证模块154还被配置为生成指示认证 决策的认证消息124。在至少一种实施方式中,认证模块154可被配置为 生成认证消息124,认证消息124可由另一模块用于做出认证决策并且可 进一步协助执行与该决策相关的适当动作(其可包括但不限于授权客户端 设备126访问受保护资源和拒绝客户端设备126访问受保护资源)。

在至少一种实施方式中,用于做出认证的认证模块154是同一认证系 统100的一部分。在至少另一种实施方式中,用于做出认证的认证模块154 是独立于认证服务器128的主机网络194的一部分,例如,当将认证服务 提供至主机网络194时。

主机网络194可包括,例如但不限于,银行、电子商务系统、金融机 构、或者其他系统。例如,主机网络194中的认证响应负责管理可诸如认 证决策政策的政策。认证响应可包括位置估计和协方差(covariance), 并且主机网络194可使用其决策政策确定客户端设备126是否在为认证限 定的阈值内或者是否拒绝认证。主机网络194还可在提供/限制对受保护资 源的访问之前考虑其他认证/授权信息。

攻击装置可能试图欺骗卫星信号,以使得客户端126感测和/或报告错 误位置132。因为网络系统逐渐用于支持具有财务价值或者生命安全影响 的位置交易,所以欺骗受到普遍关注。

如在以下图4和图6的讨论背景下详细说明的,系统100通过利用由 LEO卫星110-114、MEO卫星102-106、以及陆地源122广播的安全/秘密 码,来克服伪造来自客户端126设置的特征集的可能的尝试。以这种方式, 系统100防御在就近攻击和离岸攻击中伪造特征集的复杂的尝试。本文件 中所使用的术语“安全/秘密码”是指用于构成选择性可访问信息的码。

相比较于现有系统,系统100提供更好的室内和市区覆盖,因为可基 于LEO卫星信号和MEO卫星信号产生认证消息124,如下面在图5的背 景下更为详细说明的。

许多金融交易利用诸如蜂窝电话或者膝上型电脑的移动设备作为室 内或者市区的客户端126。金融交易可在低成本并且运行在受阻信号环境 下的平台上进行。两种标准对具有成本效益的基于卫星的认证系统比较重 要。首先,应可从包括在蜂窝电话中的卫星接收器200获得数据。其次, 基于卫星认证的系统应利用期望的客户端接收信号146、158和168操作 在蜂窝电话用户聚集的地方—室内和市区。在示出卫星接收器200的基本 信号处理步骤的图2中反映了第一标准。在图3中描述了基于卫星认证系 统的第二标准。

图2是图1中所示的卫星接收器200的示例性简化功能框图的示图。 卫星接收器200可包括广泛用于从全球导航卫星系统估计位置的卫星接收 器元件。图1中所示的卫星接收器200可使用现有的卫星接收器架构以利 用现有的基础设施和接收器,从而并不增加接收器的显著复杂性。卫星接 收器200可包括,例如但不限于,LEO卫星接收器、MEO卫星接收器、 或者其他接收器。图2是广泛用于从全球导航卫星系统估测位置的卫星接 收器的示例性简化功能框图。图1中所示的卫星接收器200从很大程度上 利用卫星接收器的架构,而不增加由图2表示的接收器的显著复杂性。

如图2所示,卫星接收器200(客户端接收器模块200)在客户端天 线198处接收诸如客户端接收的MEO卫星信号146和客户端接收的LEO 卫星信号158的射频信号。卫星接收器200随后分别从在客户端126处接 收的MEO卫星信号118和LEO卫星信号120解调客户端接收的MEO卫 星信号146和客户端接收的LEO卫星信号158。卫星接收器200通过下变 频器202将客户端接收的MEO卫星信号146和客户端接收的LEO卫星信 号158从射频(RF)下变频至中频(IF)或者基带并且通过带通滤波器 204带通滤波下变频的客户端接收信号218,来解调客户端接收的MEO卫 星信号146和客户端接收的LEO卫星信号158。

卫星接收器200随后通过模数转换器(ADC)206将低通或者带通滤 波的客户端接收信号220从模拟信号转换至数字信号,以提供数字客户端 接收信号222。卫星接收器200随后通过码擦除器(wipe-off)210从数字 客户端接收信号222中去除C/A码。卫星接收器200随后可通过载波擦除 器212从数字客户端接收信号222中去除同相载波(in-phase carrier)402。 在与图2中相似的消费者接收器中通常使用码和载波擦除器,但是,接收 器200中可以或者可以不出现码和载波擦除器。

卫星接收器200随后使用相关模块214使数字客户端接收信号222与 客户端126处的数字客户端接收信号222的相应副本进行相关,以估计在 视野内的每个卫星的估计伪距(pseudo-range)。视野内对每个卫星的估 测伪距随后用于在输出端216处估计客户端126的位置130、速度和时间 偏移。可使用如上所述的一个LEO卫星和一个MEO卫星来计算位置130。

图3是示出了室内和市区环境能够阻挡导航卫星信号的方式的示例性 无线通信环境(环境300)的示图。例如,接收的GPS信号的额定接收信 号强度304可为近似-130dBm(或者10E-16瓦)。露天的卫星接收器200 可期望额定接收信号强度304。然而,诸如蜂窝电话等客户端126可能运 作在城市建筑物的室内(其中,衰减的接收信号强度302下降至-140dBm 或者-160dBm或者甚至更弱)。因此,认证服务器128可以能够在衰减接 收信号强度302的这些较低电平下运行。

图4是示出通过MEO卫星广播的信号结构400的示例图400的示图。 MEO卫星信号118包括频率为L1的信号402,信号402被用作载波(同 相载波402)以调制使用码分多址访问(CDMA)码406(通常被称为“粗 /捕获”(C/A)码)调制的导航消息410。对于GPS系统,C/A码可被不 同地称为“粗/捕获”、“清除/访问”和“民用/访问”。MEO卫星信号118 发送采用偏移90度的相同载波频率的至少一个其他信号(正交信号406)。 对于GPS,通过已知为加密的“P(Y)”码408的另一码调制正交信号 406。P(Y)码408是通常为已知的“精确”(P)码(已知(P)码)或 者加密“Y”码(未知码(Y))。GNSS卫星使用未知码,并且因此除了 具有针对未知码的解密算法和密钥的那些,所产生的利用未知码编码的发 送信号不能被任何其他的使用。

导航消息410调制通过MEO卫星102-106广播的已知和未知码。导 航消息410包括诸如MEO卫星102的位置和时间、其他MEO卫星104、 106的粗略位置的信息以及其他信息。例如,导航消息410经由MEO卫 星信号118调制通过MEO卫星102广播的已知码和未知码。对于GNSS, 导航消息410以50位/秒至1000位/秒(bps)广播,并且由此与也调制来 自MEO卫星102的MEO卫星信号118的扩频码区分。相比较于1.023Mcp (C/A码)或者10.023Mcp(Y码)的基础扩频码,导航消息410以50 位/秒至1000位/秒缓慢地变化。

C/A码是公众已知的,因此,卫星接收器200可能经受欺骗信号。敌 方可产生携带不正确信息的一个或者多个卫星信号的摹本。在

现有客户端处的接受欺骗信号的现有卫星接收器可能计算不正确的 位置并且可被致使计算敌方希望使现有卫星接收器计算出的位置。

图5是示出城市中MEO卫星102-106(例如,GPS)和LEO卫星110-114 (例如,铱星TM))的视线矢量500的示例图的示图。如上所述,相比较 于现有解决方案,因为可仅在一个LEO卫星和一个MEO卫星基础上做出 认证决策,所以系统100提供了更为良好的室内和市区覆盖范围。图5示 出了来自MEO 108的11个GPS卫星的视线矢量502和来自LEO 116的 两个LEO卫星的视线矢量504。因为铱星TM卫星例如在图5中所示的近 似200秒窗内的大部分天空区域内移动,所以示出了两个LEO卫星110 和112的LEO卫星信号120的视线矢量504被示出为扇形。

因为LEO卫星信号120凭借LEO卫星信号120的较低海拔高度而具 有比MEO卫星信号118更高的接收功率,所以两个LEO卫星110和112 中的一个视线矢量504可能对于客户端126为可见的。例如,来自LEO 卫星110和112的接收信号强度可为近似30dB至40dB,比来自MEO卫 星102-106的接收信号强度功率更大。

此外,因为很多导航卫星位于MEO 108内,所以MEO 108的11个 视线矢量502中的至少一个对于客户端126为可见的。通过建筑物窗口可 看见MEO卫星102-106中的一个或者多个。而且,MEO卫星102-106的 一个或者多个MEO卫星信号118足够强以通过墙或者屋顶棚传播。

相比较于现有系统,系统100极大地提高了基于空间认证的室内和市 区覆盖范围。此外,系统100提供了利用由陆地源122广播的安全/秘密特 征的可能性,其可进一步增强在恶劣信号环境中的认证过程。

此外,因为事先未知来自MEO或者LEO的安全/秘密码,所以系统 100能够克服伪造来自客户端126的特征集190的可能的尝试。此外,系 统100还有效抵抗试图共观察(co-observe)安全/秘密码并且实时广播经 修改的伪造的攻击装置。本文考虑由伪造装置可能使用的两种实时攻击策 略:下面更为详细说明的就近攻击和离岸攻击。

就近攻击将接收器放置成就近受害方受害方位置。就近攻击可能不需 要昂贵的设备,但是,攻击接收器必须靠近于受害方受害方位置,以使得 攻击接收器充分捕获同一信号特征。系统100通过利用高精度测距信号(诸 如通常从MEO 108中的GNSS卫星广播的高精度测距信号)克服就近攻 击。高精度测距信号支持近似几十米的即时精确度;因此,通过使用高精 度测距信号,本公开的实施方式迫使攻击接收器非常接近于受害方位置。 相比在长距离处,在较短距离处,攻击接收器可能比较明显并且更易于被 检测。

伪造装置还可能尝试实时或者近似实时的所谓离岸(offshore)攻击。 在这种情况下,攻击装置处理接收的信号,以建立在远程位置处接收的数 字特征。因为攻击装置可使用更为复杂的信号处理来减少就近攻击接收器 的数目,所以离岸攻击不同于就近攻击。系统100通过利用相对于MEO 卫星的天线覆盖范围具有较小(小)地面天线覆盖范围702(天线波束覆 盖范围702)(图7)的LEO卫星信号120来克服离岸攻击。例如,铱星 TM卫星具有仅几百千米的天线覆盖范围,并且可使用对各个小地面天线覆 盖范围702(天线波束覆盖范围702)可以为唯一的秘密/安全码602(图6)。 因此,可迫使离岸攻击装置位于小地面天线覆盖范围702的直径内。而且, 实施方式可要求特征包含来自两个重叠的小地面天线覆盖范围702(图7) 的的安全/秘密码602。

图6是示出根据本公开的实施方式的基于来自MEO、LEO和陆地源 的信号的认证系统的示例图的示图。系统600利用由LEO卫星110和MEO 卫星102以及陆地源122广播的安全/秘密码(例如,用于卫星的波束特定 密钥(beam-specific key)和用于伪卫星的陆地密钥)。

通过与大多数全球导航卫星系统(例如,GPS中的Y码或者M码或 者伽利略中的公共规范服务)相关联的安全/秘密码408认证MEO测量。 客户端126收集射频或者中频(RF或者IF)特征(客户端MEO信号特 征164)并且将该特征发送给认证服务器128。该特征可伴随有位置130 的宣称位置和/或相关联的请求。认证服务器128将这些快照(snapshot) 与在另一位置处接收的安全/秘密码相关联。认证服务器128确定客户端特 征集190中的安全/秘密码408相对于公共码406具有正确的时延。可替代 地,认证服务器128基于客户端特征集190确定客户端126的位置130近 似等于宣称的客户端位置。

如图6所示,LEO卫星110还广播安全/秘密码602。再次,客户端 126收集RF和/或IF快照(客户端LEO信号特征166)并且将它们发送 至认证服务器128以进行相关和验证。在一种实施方式中,MEO安全/秘 密码408和LEO安全/秘密码602包含在来自客户端126的单个宽带特征 (诸如特征集190)中。

在一种实施方式中,使用来自陆地源122的服务器陆地信号196的安 全/秘密码604。在阻挡卫星信号并且可能存在离岸攻击装置的信号环境 下,这些安全/秘密码604尤其重要。如果服务器陆地信号196位于相邻的 频带内,则其特征也可包含在特征集190的LEO/MEO特征中。如果不是, 则所有的三个信号(LEO、MEO和陆地)可被转换至共同的中频并且由 此包含在特征集的共同特征中。

在一些实施方式中,来自陆地源122的服务器陆地信号196的码604 可能不是安全/秘密的。借助其覆盖区域,不安全/秘密的码604可在没有 嵌入的安全/秘密码的情况下对电磁攻击装置施加额外的障碍。

尽管相关处理的各个方面相似,然而,在LEO特征与MEO特征之间 存在几个重要的差异。例如,因为LEO卫星110-114更接近于地球,所以 LEO卫星信号120比MEO卫星信号118功率更大。然而,因为MEO卫 星102-106海拔高度更高并且由此更为广泛可见,所以MEO卫星信号118 对于任何给定的接收器往往更为丰富。如上所述,这些性能互补。因为信 号功率大并且丰富,所以客户端特征集134可能包含至少一个LEO卫星 信号120和一个MEO卫星信号118。

对于LEO与MEO特征之间差异的另一实例,客户端126可以是收发 器并且能够接收控制信号和将控制信号发送至LEO控制部分。因此,其 可请求认证服务器128开始从LEO卫星110的安全/秘密码602的传输。 可替代地,认证服务器128可命令客户端126在特定时间收集RF快照。

对于LEO与MEO特征之间差异的另一实例,可通过天线波束将LEO 卫星110的安全/秘密码602发送至分别在卫星覆盖范围700内的各个天线 波束覆盖范围702。图7示出了北美铱星TM卫星的典型天线覆盖范围。

图7是示出了在一个铱星TM卫星覆盖范围700(覆盖范围700)内的 天线波束覆盖范围702的示例图的示图。图7示出了北美铱星TM卫星的 的典型覆盖范围(诸如铱星TM覆盖范围700)。铱星TM覆盖范围700几 乎覆盖北美;并且覆盖范围700的直径近似为4000km。然而,覆盖范围 700包含图7中也示出的二十多个单独的小型地面天线波束覆盖范围702 (天线波束702)。在覆盖范围700的边缘704附近的天线波束覆盖范围 702趋于较大;其长轴可为500km或者更大。在覆盖范围700的中心710 附近的天线波束706可以相当小,且直径为100km而已。因为整个覆盖范 围700在八分钟至十分钟之内通过上方,并且天线波束覆盖范围702中的 每个均可分别在100秒至200秒通过上方。重叠区域712通常远小于天线 波束覆盖范围702中的一个的面积。图8分别示出了但被诸如客户端126 的静态客户端接收时的四个天线波束覆盖范围702的C/N0

图8是示出铱星TM卫星的四个天线波束覆盖范围702的信噪比(C/N0) 相对时间的示例图800的示图。图8分别示出了当被诸如客户端126的静 态客户端接收时的四个天线波束702的C/N0曲线802/804/806/808。曲线 802和804示出了持续近似200秒可见的天线波束702的C/N0。曲线806 和808示出了仅持续100秒的天线波束的C/N0

因为难以预测安全/秘密MEO码408和LEO码602,所以可使用安全 /秘密MEO码408和LEO码602经由特征集190认证通过客户端126宣 称的推测位置。因此,攻击装置不能容易地获得并且存储在未来适宜时刻 使用的特征集190。更重要的是,基于空间认证的系统100在存在试图实 时伪造特征的精密欺骗装置的情况下幸存。

如此,系统100迫使“离岸”攻击装置位于受害方位置的数十千米以 内。如果交易价值很高,则认证服务器仅可请求在两个波束在宣称位置重 叠时产生的第二特征。例如,这些重叠情形可发生在近似几十秒以内。系 统100允许包括携带安全/秘密特征的陆地无线电信号。在这种情形下,攻 击半径减小至陆地无线电信号的范围;这就是指攻击接收器可能需要位于 受害方位置的几百米以内。

在一些实施方式中,系统100允许包括携带非安全/秘密特征的陆地无 线电信号。在这种情况下,攻击半径仍可减少至陆地无线电信号的范围, 即,攻击接收器甚至可能需要位于受害方位置的几百米以内以接收非安全 /秘密特征。利用非安全/秘密特征的系统在传输时可利用可或者可不具有 安全/秘密码的现有地面系统。

图9是示出击败可由特征伪造装置执行的就近特征伪造攻击的方式的 示例图900的示图。如图9所示,攻击装置将接收器902放置成接近于被 攻击的位置130。攻击装置在攻击时希望生成与在位置130处收集的特征 集190非常相似的特征。为此,攻击装置简单地查看与(可信)客户端126 相同的卫星集并且基于这些观察生成伪造特征904。使用宣称的定位将伪 造特征904发送至认证服务器128。因为从位于位置130的宣称位置附近 的位置906发射,所以这种攻击可能有效。

图10是示出根据本公开的实施方式的利用MEO信号击败就近特征伪 造攻击的方式的示例图的示图。因为MEO安全/秘密码408具有较高的带 宽,所以系统100的MEO部分缓解了就近攻击。因此,MEO安全/秘密 码408非常精确并且支持高精确度。例如,GPS的Y码精确度1002通常 比5米更高。甚至在市区与室内环境中,该精确度通常为50米而已。因 此,该MEO精确度可分辨出攻击位置和受害方位置,除非攻击装置位于 宣称位置的100米左右内。此外,如果从单个攻击位置产生所有的攻击, 例如,繁华购物中心的停车场,则认证服务器128可检测到多个攻击。

离岸攻击尝试利用精密的天线、接收器、以及处理系统击败组合的 MEO特征认证与LEO特征认证。其非常不同于就近攻击。就近攻击在攻 击时将极其简单的设备放置成接近于用户位置。因此,就近攻击需要较大 的部署工作。在将所有攻击接收器放置成靠近被攻击的位置之后,接收器 可从该位置捕获卫星特征。相反,离岸(offshore,远程)攻击装置将处 理复杂度与接近度交换。其使用精密的信号处理,以使得其可从距离上攻 击。该信号处理器用于在攻击时产生存在于远程位置的特征。例如,就近 攻击必须将接收器放置在被攻击位置的近似100米左右以内。相反,例如, 离岸攻击可能将其天线和信号处理机放置在距被攻击位置的近似1000km 或者更远范围内。

图11是针对可由特征伪造装置激活的离岸特征伪造攻击的仿真系统 1100的示例性功能框图的示图。存在多种变形,但是,该攻击系统可被分 割成两部分:卫星特定处理1102和受害方特定处理1110。

就离岸攻击装置而言,使用卫星特定处理1102来接收和分离来自不 同卫星的信号。可使用受控辐射天线(CRPA)1104来提取各个卫星信号, 但是,离岸攻击装置可使用其他技术。例如,可使用多普勒频移或者W 码处理来分离卫星信号。

受控辐射天线(CRPA)1104能够合成放大且隔离来自视野范围内各 个GNSS卫星的信号的波束。在放大、滤波和下变频信号的各个接收器前 端1106处理这些信号。然后,就离岸攻击便利性而言,通过移相器1108 使信号移相以合成每个卫星的各个波束。移相操作可被想象成具有K行和 N列的矩阵,其中,K是视野范围内的卫星数目并且N是波束形成天线中 的单元天线的数目。该文献描述了可用于适配权重以创建指向各个卫星的 波束的多种算法。这些算法还可创建空白(null)以削弱附近射频干扰。

受害方特定处理1110通过将适当的时延和多普勒频移1112引入通过 卫星特定处理1102分离的信号中来建立用于任一给定受害方位置的卫星 特征。可使用GNSS仿真器为处于诸如位置130的受害方位置的客户端 126提供适当的时延和多普勒频移1112。尽管该过程比较复杂,然而,当 今市场上存在合适(或者几乎合适的)仿真器。

受害方特定处理1110预测应存在于诸如位置130的受害方位置处的 伪距离延迟和多普勒频移。预测的伪距离延迟用于使由卫星特定处理器 1102捕获的信号时移。预测的多普勒频移用于使由卫星特定处理器1102 捕获的信号频移。在偏移之后,卫星信号被削弱以模拟受害方环境。或许, 如果受害方位置130位于市区或者室内,则添加多路径。在建立各个卫星 信号之后,它们与随机噪声加在一起并且进行采样以创建伪造信号特征 1114。

图12是示出根据本公开的实施方式的使用LEO信号如何击败离岸特 征伪造攻击的针对图10中所示的离岸特征伪造攻击的仿真系统的示例性 功能框图1200的示图。

离岸攻击比较复杂,但是,比较可行。如果一个攻击位置可攻击多个 受害方位置,则甚至更具成本效益。幸运的是,本文所描述的系统100降 低了离岸攻击的可行性。系统100基于LEO卫星110对抗离岸攻击。如 上所述,LEO覆盖范围700的直径近似4000km。然而,其被分解成图7 中所示的多个小地面天线覆盖范围702或者天线波束覆盖范围702。例如, 这些各个小地面天线波束覆盖范围702(天线波束702)通常横跨100km 并且在约100秒至200秒内通过上方。系统100广播用于每个波束的唯一 码602。事实上,其可仅响应于请求认证的客户端126广播唯一码602。 因此,离岸攻击装置必须在受害方位置的100km内,诸如位置130。图12 描绘了这种约束;位于1202的攻击装置不能攻击位置1204。甚至利用图 11中所示的信号处理,攻击装置完全不能看到从覆盖位置1204的波束广 播的码。因此,攻击装置不能建立伪造信号特征1114。

系统100包括使离岸攻击甚至更为昂贵的两种额外特征。对于高价交 易,认证服务器128可能需要推测诸如客户端126提供包含来自两个重叠 波束的码的RF特征。图7和图12示出了常见但是重叠区域非常小(其中 一些的直径仅为数十千米)的波束重叠708。因此,“离岸”攻击装置不 得不在受害方位置的数十千米之内;不再是离岸的。在提出交易时,受害 方位置可不位于波束重叠708中的一个内。如果交易价值较高,则因为来 自LEO卫星110的天线波束覆盖范围702快速移动并且延迟仅在图8中 所示的几十秒内,所以认证服务器128可在重叠时请求第二特征。

图13是针对由特征伪造装置可激活的基于就近信号捕获和离岸处理 的混合攻击特征伪造的仿真系统的示例性功能框图的示图。

如图13所示,攻击装置将天线放置成接近于受害方位置。因此,攻 击装置与受害方位于同一LEO波束内。而且,其甚至可能位于同一波束 重叠内。攻击硬件可由波束转向天线或者天线单元构成。在任一情况下, 通过任意合适的数据链路将收集的特征回载至攻击服务器。

混合攻击服务器比离岸攻击服务器更为复杂。两者必须分离来自不同 卫星的信号,但是,混合攻击装置必须为每个卫星与受害方位置产生分离 处理。如果视野范围内存在K个卫星和V个受害方,则攻击服务器必须 支持K×V个处理。就攻击服务器(K个处理而言,仅需要再调用分离卫 星的离岸攻击装置。使因此,系统100迫混合攻击装置承担两种可观的成 本:靠近于感兴趣的每个受害方位置的测量设备与具有伴随时延的复杂处 理器。

图14是根据本公开的实施方式的基于空间认证的系统1400(系统 1400)的示例性功能框图的示图。系统1400的一些实施方式可包括被配 置为支持此处不需要详细描述的已知或者常规操作特征的额外部件和元 件。在图14中所示的实施方式中,根据本公开的实施方式,可使用系统 1400发送和接收数据。系统1400可具有与图1至图8中所示的实施方式 相似的功能、材料、以及结构。因此,此处未再多余地描述共同特征、功 能、以及元件。

系统1400通常包括客户端126和认证服务器128。客户端126可包括 客户端解调模块1450,解调模块1450包括:下变频器202、ADC 206、 客户端特征提取模块170、加密模块1404、客户端处理器模块1406(处理 器模块1406)、客户端存储器模块1408(存储器模块1408)、以及软件 可配置无线电模块1436(SCR 1436)。

SCR 1436可包括MEO处理器模块1442、LEO处理器模块1444、以 及陆地处理器模块1446,以分别解调MEO卫星信号118、客户端接收 MEO卫星信号146的LEO卫星信号120、以及编码陆地信号160。SCR 1436 可管理MEO卫星信号118、LEO卫星信号120、以及编码陆地信号160 对客户端126位置认证的贡献。

经由特征信号164、196、168从客户端126分别发送至认证服务器128 的客户端特征集190包括RF/IF特征208。RF/IF特征208包括在客户端 126处由客户端天线198所捕获的客户端接收的MEO卫星信号146、客户 端接收的LEO卫星信号158、以及客户端接收的陆地信号162(射频(RF) 或者中频(IF)信号)的采样,从而生成客户端特征集190。

在图14中所示的实施方式中,客户端126不需要跟踪客户端接收的 的MEO卫星信号146、客户端接收的LEO卫星信号158、以及客户端接 收的陆地信号162。如图14所示,通过位于认证服务器128中的跟踪和位 解调模块1428执行跟踪和位解调。

认证服务器128可包括服务器天线150、服务器解调模块1440、认证 决策模块1424、跟踪和位解调模块1422、服务器数据模块174、服务器客 户端数据模块172、解密模块1430、服务器处理器模块1432(处理器模块 1432)、服务器存储器模块1434(存储器模块1434)、以及软件可配置 无线电模块1436(SCR 1436)。

服务器解调模块1440包括被配置为执行从RF至基带的变换的下变频 器1412、被配置为执行带通滤波的带通滤波器1414、被配置为执行模数 转换的ADC 1416、被配置为移除C/A码的码擦除器1418、以及被配置为 移除同相载波402的载波擦除器1402。

跟踪和位解调模块1422可被配置为估计服务器接收信号148、156、 以及196的数据位。

跟踪和位解调模块1428可被配置为估计客户端接收信号146、158、 以及162的数据位。

如上所述,服务器客户端数据模块172被配置为构建客户端MEO信 号特征164、客户端LEO信号特征166、以及客户端陆地信号特征,以提 供特征集190。

服务器数据模块174被配置为构建服务器MEO信号特征176、服务 器LEO信号特征178、以及服务器陆地信号特征180,以提供服务器特征 集192。

通过认证决策模块1424比较客户端特征集190与服务器特征集192 以生成认证消息124。

加密模块1404和解密模块1430用于进一步增强认证性能。客户端唯 一密钥(或者设备特征)与来自客户端126的GNSS特征集级联 (concatenate)。客户端唯一密钥可基于,例如但不限于,加密对称加密 (例如,AES)、不对称加密(例如,公共-私有加密)、物理不可克隆功 能(PUF)、或者其他加密。客户端唯一密钥用于以如下方式更改客户端 特征集190:如果客户端唯一密钥的服务器副本与用于创建服务器特征集 的一个匹配,则认证服务器128处的位置验证通常才成功。

卫星特征可以被视为用于设备加密的明文。卫星特征还可包含也是通 过使由客户端126捕获的卫星特征与卫星参考接收器处的对应数据相关来 验证的基层客户端位置速率时间(PVT)信息。因此,生成级联安全系统。

使用被设计成执行本文所描述函数的通用处理器、内容可寻址存储 器、数字信号处理器、专用集成电路、现场可编程门阵列、任一合适的可 编程逻辑设备、离散门或者晶体管逻辑、离散硬件部件、或者其任一组合 可实现或者实现处理器模块1406/1432。以这种方式,处理器可被实现为 微处理器、控制器、微控制器、状态机等。

处理器还可被实施为计算设备的组合,例如,数字信号处理器与微处 理器的组合、与数字信号处理器核结合的多个微处理器、一个或者多个微 处理器、或者任何其他这种配置。实际上,处理器模块1406/1432包括被 配置为执行与系统1400的操作相关联的功能、技术、以及处理任务的处 理逻辑。

具体地,处理逻辑被配置为支持本文所描述的认证方法。例如,处理 器模块1406/1432可分别包括可操作为基于各种卫星和陆地通信协议选择 用于解调信号的参数的软件可配置无线电模块1436(SCR 1436)。例如, SCR 1436可包括MEO处理器模块1442、LEO处理器模块1444、以及陆 地处理器模块1446,以分别解调客户端接收的MEO卫星信号146的LEO 卫星信号120、MEO卫星信号118、以及编码陆地信号160。

又例如,客户端处理器模块1406可被适当地配置成经由天线(未示 出)将客户端特征集190从客户端126发送至认证服务器128。又例如, 服务器处理器模块1432可被适当地配置成经由天线(未示出)将认证消 息144发送至另一服务器或者客户端126。而且,结合本文所公开的实施 方式描述的方法步骤或者算法可直接体现为由处理器模块1406/1432可执 行的软件模块、硬件、固件、或者其任一组合。

存储器模块1408/1434可被实现为非易失性存储设备(非易失性半导 体存储器、硬盘设备、光盘设备等)、随机存取存储设备(例如,SRAM、 DRAM)、或者本领域已知的任何其他形式的存储介质。存储器模块 1408/1434可分别耦接至处理器模块1406/1432,以使得处理器模块 1406/1432可从存储器模块1408/1434读取信息并且将信息写入存储器模 块1408/1434。

例如,处理器模块1406和存储器模块1408、处理器模块1432和存储 器模块1434可存在于其相应的ASIC中。存储器模块1408/1434还可分别 被集成到处理器模块1406/1432中。在实施方式中,存储器模块1408/1434 可包括用于在由处理器模块1406/1432执行的指令执行过程中存储临时变 量或者其他中间信息的缓存存储器。存储器模块1408/1434还可包括用于 存储由处理器模块1406/1432执行的指令的非易失性存储器。

例如,存储器模块1408/1434可包括根据本公开的实施方式的用于存 储位置特征190/192和其他数据的位置数据库(未示出)。又例如,客户 端存储器模块1408可在客户端126处存储数字客户端接收信号222的副 本。本领域技术人员应当理解的是,在硬件、计算机可读软件、固件、或 者其任一组合中可实施结合本文所公开的实施方式描述的各个示意性块、 模块、电路、以及处理逻辑。为了清晰地示出硬件、固件、以及软件的可 交换性和兼容性,就其功能方面整体描述了各个示意性部件、块、模块、 电路、以及步骤。

在一些实施方式中,系统1400可包括适合于本文所描述的操作的任 意数目的处理器模块、任意数目的存储器模块、任意数目的发射器模块、 以及任意数目的接收器模块。为易于描述,示出的系统1400描述了简单 的实施方式。系统1400的这些元件以及其他元件相互连接在一起,从而 允许系统1400的各个元件之间的通信。在一种实施方式中,经由数据通 信总线(未示出)可将系统1400的这些元件以及其他元件相互连接在一 起。

发射器模块和接收器模块可位于耦接至其相应共享天线(未示出)的 各个处理器模块1406/1432中。尽管在简单模块中仅需要一个共享天线, 然而,可提供具有多个和/或更为复杂的天线配置的多个精密模块。此外, 尽管在图14中未示出,然而,本领域技术人员应当认识到,发射器可发 送至多于一个的接收器并且多个发射器可发送至同一接收器。

该功能是实施为硬件、固件、还是软件取决于具体应用和施加在整个 系统上的设计约束。熟悉本文所描述的构思的人员可以适用于各种特定应 用的方式实施该功能,但是,该实施决策不得被解释为导致背离本发明的 范围。

图15是示出根据本公开的实施方式的基于位置认证的过程1500的示 例性流程图的示图。可通过软件、硬件、固件、具有用于执行该过程方法 的计算机可执行指令的计算机可读介质、或者其任一组合来执行结合过程 1500执行的各个任务。过程1500可被记录在计算机可读介质(诸如半导 体存储器、磁盘、光盘等)中并且可由计算机CPU(诸如其中存储计算机 可读介质的处理器模块1406/1432)访问和执行。

应当认识到,过程1500可可包括任意数目的额外或者可替代的任务, 图15中所示的任务不需要按照示出顺序执行,并且过程1500可被结合到 具有本文未详细描述的额外功能的更为全面的程序或者过程中。在一些实 施方式中,过程1500的一部分可通过系统100和1400的不同元件(诸如 客户端126、认证服务器128等)来执行。过程1500可具有与图1至图 12中所示的实施方式相似的功能、材料、以及结构。因此,此处未多余地 描述共同的特征、功能、以及元件。

过程1500可通过在客户端设备处从至少一个MEO卫星接收至少一个 客户端接收的MEO卫星信号开始(任务1502)。至少一个MEO卫星可 包括,例如但不限于,全球导航卫星系统(GNSS)卫星、全球定位系统 (GPSTM)卫星、格罗纳斯(GLONASSTM)卫星、北斗导航系统 (COMPASSTM)卫星、伽利略TM卫星、或者可用于支持定位、导航、或 者时间相关应用的其他卫星。

然后,通过在客户端设备处从至少一个LEO卫星接收至少一个客户 端接收的LEO卫星信号继续过程1500(任务1504)。

然后,通过构建包括在至少一个客户端接收的MEO卫星信号的MEO 特征提取时间段内的采样的客户端MEO信号特征继续过程1500(任务 1506)。

然后,通过构建包括在至少一个客户端接收的LEO卫星信号的LEO 特征提取时间段内的采样的客户端LEO信号特征继续过程1500(任务 1508)。

然后,通过在服务器设备处接收至少一个MEO卫星信号以提供至少 一个服务器接收的MEO卫星信号继续过程1500(任务1510)。

然后,通过在服务器设备处构建至少一个LEO卫星信号的副本以提 供至少一个服务器LEO卫星信号来继续过程1500(任务1512)。

通可过接收包括在从至少一个MEO卫星接收的至少一个客户端接收 的MEO卫星信号的MEO特征提取时间段内的采样的客户端MEO信号特 征来继续过程1500(任务1514)。

然后,可通过构建包括在从至少一个MEO卫星接收的至少一个服务 器接收的MEO卫星信号的MEO特征提取时间段内的采样的服务器MEO 信号特征来继续过程1500(任务1516)。

然后,可通过比较客户端MEO信号特征与服务器MEO信号特征以 提供MEO比较结果来继续过程1500(任务1518)。

然后,可通过接收包括在从至少一个LEO卫星接收的至少一个客户 端接收的LEO卫星信号的LEO特征提取时间段内的采样的客户端LEO 信号特征来继续过程1500(任务1520)。

然后,可通过构建包括在至少一个LEO卫星的至少一个服务器LEO 卫星信号的LEO特征提取时间段内的采样的服务器LEO信号特征来继续 过程1500(任务1522)。

然后,可通过比较客户端LEO信号特征与服务器LEO信号特征以提 供LEO比较结果来继续过程1500(任务1524)。

然后,可通过基于MEO比较结果与LEO比较结果认证客户端所处的 位置来继续过程1500(任务1526)。

然后,可通过在服务器设备处确定MEO比较结果与LEO比较结果并 且在主机设备处认证客户端的位置来继续过程1500(任务1528)。

然后,可通过接收包括在从两个LEO卫星接收的两个客户端接收的 LEO卫星信号的LEO特征提取时间段内的采样的客户端LEO信号特征来 继续过程1500(任务1530)。

然后,可通过构建包括在两个LEO卫星的两个服务器LEO卫星信号 的LEO特征提取时间段内的采样的服务器LEO信号特征来继续过程1500 (任务1532)。

然后,可通过接收包括在从至少一个陆地源接收的至少一个客户端接 收的陆地信号的陆地时间段的采样的客户端陆地信号特征来继续过程 1500(任务1534)。

然后,可通过将客户端MEO信号特征、客户端LEO信号特征、以及 陆地信号特征发送至服务器设备来继续过程1500(任务1536)。

然后,可通过在服务器设备处构建至少一个客户端接收的陆地信号的 副本以提供服务器陆地信号特征来继续过程1500(任务1538)。

然后,可通过比较客户端陆地信号特征与服务器陆地信号特征以提供 陆地比较结果来继续过程1500(任务1540)。

然后,可通过基于MEO比较结果、LEO比较结果、以及陆地比较结 果认证客户端的位置来继续过程1500(任务1542)。

图16是示出根据本公开的实施方式的基于客户端位置认证的过程 1600的示例性流程图的示图。可通过软件、硬件、固件、具有用于执行过 程方法的计算机可执行指令的计算机可读介质、或者其任一组合来执行结 合过程1600执行的各项任务。过程1600可记录在计算机可读介质(诸如 半导体存储器、磁盘、光盘等)中,并且可例如被计算机CPU(诸如其中 存储计算机可读介质的处理器模块1406/1432)访问和执行。

应当认识到,过程1600可包括任意数目的额外或者替代任务,图16 中所示的任务不需要按照示出顺序执行,并且过程1600可被结合到具有 本文未详细描述的额外功能的更为全面的程序或者过程中。在一些实施方 式中,可通过系统100、600和1400的不同元件(诸如客户端126、认证 服务器128等)来执行过程1600的各部分。过程1600可具有与图1、图 6、以及图12中所示的实施方式相似的功能、材料、以及结构。因此,此 处未多余地描述共同的特征、功能、以及元件。

可通过在客户端设备处从至少一个MEO卫星接收至少一个客户端接 收的MEO卫星信号来开始过程1600(任务1602)。至少一个MEO卫星 可包括,例如但不限于,全球导航卫星系统(GNSS)卫星、全球定位系 统(GPSTM)卫星、格洛纳斯(GLONASSTM)卫星、北斗导航系统 (COMPASSTM)卫星、伽利略TM卫星、或者可用于支持定位、导航、或 者时间相关应用的其他卫星。

然后,可通过在客户端设备处从至少一个LEO卫星接收至少一个客 户端接收的LEO卫星信号来继续过程1600(任务1604)。

然后,可通过构建包括在至少一个客户端接收的MEO卫星信号的 MEO特征提取时间段内的采样的客户端MEO信号特征来继续过程1600 (任务1606)。

然后,可通过构建包括在至少一个客户端接收的LEO卫星信号的LEO 特征提取时间段内的采样的客户端LEO信号特征来继续过程1600(任务 1608)。

然后,可通过将客户端MEO信号特征和客户端LEO信号特征发送至 服务器以认证客户端设备位置来继续过程1600(任务1610)。

然后,可通过构建包括在从两个LEO卫星接收的两个客户端接收的 LEO卫星信号的LEO特征提取时间段内的采样的客户端LEO信号特征来 继续过程1600(任务1612)。

然后,可通过接收包括在从至少一个陆地源接收的至少一个客户端接 收的陆地信号的客户端陆地时间段内的采样的客户端陆地信号特征来继 续过程1600(任务1614)。

然后,可通过将客户端MEO信号特征、客户端LEO信号特征、以及 陆地信号特征发送至服务器以认证客户端设备的位置来继续过程1600(任 务1616)。

以这种方式,本公开的实施方式提供了针对欺骗和伪造(诸如就近和 离岸攻击)的保护以及在其中卫星信号经常受阻的市区和室内环境中较强 覆盖。本公开的实施方式提供一种允许在位于诸如室内和市区的低信噪比 (SNR)环境下的客户端设备接收导航卫星信号的足够的接收信号强度的 认证系统。

尽管下列详细描述中已经提供了至少一种示例性实施方式,然而,应 当认识到,存在大量的变形。还应当认识到,本文所描述的实例实施方式 或者多种实施方式并不旨在以任意方式限制本主题的范围、适用性、或者 配置。而是上述详细描述将为本领域技术人员提供用于实施所描述实施方 式或者多种实施方式的便捷路线图。应当理解的是,在不背离由权利要求 限定的范围(其包括在提交本专利申请时已知的等同物和可预见的等同 物)的情况下,可对元件的功能和布置做出各种改变。

在该文件中,本文使用的术语“模块”是指软件、固件、硬件、以及 用于执行本文所描述的相关功能的元件的任意组合。此外,出于讨论的目 的,将各个模块描述为离散模块;然而,对本领域技术人员显而易见的是, 可将两个或者更多个模块组合以形成执行根据本公开的实施方式的相关 功能的单个模块。

在该文件中,术语“计算机程序产品”、“计算机可读介质”等可用 于整体指诸如存储器、存储设备、或者存储单元的介质。在存储由处理器 模块1406/1432使用以使处理器模块1406/1432执行具体操作的一个或者 多个指令时可涉及这些及其他形式的计算机可读介质。整体被称为“计算 机程序代码”、或者“程序代码”的这些指令(其可被分组成计算机程序 形式或者其他分组)在被执行时实现使用系统100、600和1400的方法。

上述描述涉及“连接”或者“耦接”在一起的元件或者节点或者特征。 如本文使用的,除非另有明确规定,否则“连接”是指一个元件/节点/ 特征直接连接至(或者直接通信至)另一元件/节点/特征,并且不一定必 须是机械连接。同样,除非另有明确规定,否则“耦接”指一个元件/节 点/特征直接或者间接连接至(或者直接或间接通信至)另一元件/节点/特 征,并且不一定必须机械连接。因此,尽管图1-图12中描绘了元件的示 例性布置,然而,在本公开的实施方式中可存在额外的中间元件、设备、 特征、或者部件。

除非另有明确规定,否则该文件中所使用的术语和短语应被解释为开 放性的而不是限制性的。作为上述实施例:术语“包括”被读取为是指“包 括但不限于”等,术语“实例”用于提供所讨论的项的示例性情形,而并 并不是排他的或者限制其列表,并且诸如“常规的”、“传统的”、“正 常的”、“标准的”、“已知的”、以及相似含义术语的形容词不得被解 释为将所描述的项局限于给定的时间段或者作为给定时间可用的项,而是 应被读取为包括在当前或者未来任意时间可用或已知的常规、传统、正常、 或者标准技术。

同样,与连词“和”链接的一组项不应被读取为要求这些项中的每一 个均存在该分组中,而是被读取为“和/或”,除非另有明确规定。同样, 与连词“或”链接的一组项不应被读取为要求该组中相互排他,而是也应 被读取为“和/或”,除非另有明确规定。

而且,尽管以单数形式描述或者要求保护本公开的各项、元件、或者 部件,然而将复数考虑在其范围内,除非明确规定局限于单数形式。在一 些情形下,诸如“一个或多个”、“至少”、“但不限于”、或者其他类 似短语的延伸词汇和短语的存在不应被读成意指在缺少这种延伸短语的 情形下意指或要求较窄的情况。当提及数值或者范围时,术语“大约”旨 在包括由于进行测量时可能发生的经验型错误导致的值。

如本文使用的,除非另有明确规定,否则,“可操作”是指能够使用、 适合或易于使用或服务,可用于特殊目的,并且能够执行本文所描述的所 描绘或期望的功能。就系统和设备而言,术语“可操作”是指系统和/或设 备是全功能的和校准的,包括用于和满足在被激活时执行所述功能的适用 操作需求的元件。就系统和电路而言,术语“可操作”是指系统和/或电路 为全功能的和校准的,包括用于和满足在被激活时执行所述功能的适用操 作需求的逻辑。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号