首页> 中国专利> 活化诱导胞苷脱氨酶(AID)突变体及使用方法

活化诱导胞苷脱氨酶(AID)突变体及使用方法

摘要

本发明提供了活化诱导胞苷脱氨酶(AID)蛋白的功能性突变体,与野生型AID蛋白相比其具有增加的活性。本发明还提供了编码所述功能性AID突变体的核酸,以及包含所述核酸的载体和细胞。本发明还提供了使用所述功能性突变AID蛋白的方法。

著录项

  • 公开/公告号CN102482639A

    专利类型发明专利

  • 公开/公告日2012-05-30

    原文格式PDF

  • 申请/专利权人 医学研究会;

    申请/专利号CN201080023311.X

  • 发明设计人 M·王;Z·杨;C·拉达;M·纽伯格;

    申请日2010-04-05

  • 分类号C12N5/00(20060101);C12N9/78(20060101);C12N15/00(20060101);A01K67/027(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人王健

  • 地址 英国伦敦

  • 入库时间 2023-12-18 05:30:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-31

    专利权的转移 IPC(主分类):C12N5/00 登记生效日:20200108 变更前: 变更后: 申请日:20100405

    专利申请权、专利权的转移

  • 2016-01-06

    授权

    授权

  • 2012-07-11

    实质审查的生效 IPC(主分类):C12N5/00 申请日:20100405

    实质审查的生效

  • 2012-05-30

    公开

    公开

说明书

相关申请的交叉引用

本专利申请要求于2009年4月3日提交的美国临时专利申请第61/166,349号的权益,其援引加入本文。

电子提交材料的援引加入

同时提交的计算机可读取的核苷酸/氨基酸序列表整体援引加入本文,并且如下所示:一个2010年4月1日创建的名为“SequenceListing.TXT”的140,103字节的ASCII(Text)文件。

背景技术

产生抗体多样化的自然机制利用体细胞高变(SHM)的过程以引发免疫球蛋白可变区的进化,从而迅速产生与体液应答相关的第二抗体所有组成成分。在体内,SHM代表一个高效的过程,其能够迅速以代表抗体优化的自然过程的方式探索生产性折叠结构并进化出高亲和力抗体。因此,对于尝试在体外复制SHM有很大的兴趣,以便创造简单、稳健的方法,其能够直接在哺乳动物细胞环境内模拟亲和力成熟的自然过程以选择和进化免疫原性耐受并且在哺乳动物细胞中高表达的抗体(Cumbers et al.,NatBiotechnol.,20(11):1129-1134(2002);Wang et al.,Prot.Eng.Des.Sel.,17(9):569-664(2004);Wang et al.,Proc.Natl.Acad.Sci.USA.,101(48):16745-16749(2004);Ruckerl et al.,Mol.Immunol.,43(10):1645-1652(2006);Todo et al.,J.Biosci.Bioeng.,102(5):478-81(2006);Arakawa et al.,NucleicAcids Res.,36(1):e1(2008))。

然而,已从单个人或动物分离的天然抗体常不能证明最佳亲和力属性,因为免疫系统固有的内在亲和力上限阻止体内辨别并因此选择具有大于约100pM亲和力的抗体(Batista and Neuberger,Immunity,8(6):751-91998,(1998)和EMBO J.,19(4):513-20(2000)。

使用噬菌体展示文库可以解决一些问题,并且已证实基于噬菌体展示的方法能够常规地产生高亲和力抗体。然而,从理论角度来看,这样的静态文库的大小和范围本质上是有限的,因为即使最大的(1012)文库仅可以探索小部分潜在的先天免疫组成成分。此外,不可以同时在良好的哺乳动物表达和高亲和力的基础上通过噬菌体展示方法共进化抗体,从而引起另外由在哺乳动物宿主细胞中低表达所导致的潜在的下游生产问题。此外,使用随机诱变结合噬菌体展示缺少在抗体亲和力成熟的自然过程中发现的内在选择性谱,这常导致人抗人免疫性或不期望的交叉反应性谱的问题。

最初利用人伯基特淋巴瘤细胞系Ramos证实了在体外利用体细胞高变来使用培养细胞系进化特异性靶抗原的抗体(Cumbers et al.,Nat.Biotechnol.,20(11):1129-1134(2002))。Ramos和其他B细胞系还成功地用于进化随机整合入宿主细胞染色体DNA的非抗体基因(Wang et al.,Prot.Eng.Des.Sel.,17(9):569-664(2004)和Proc.Natl.Acad.Sci.USA.,101(48):16745-16749(2004))。此外,利用有或无Ig特异性顺式调控元件的游离型载体在B细胞系中在非抗体基因上证实了高效的体细胞高变(Ruckerl et al.,Mol.Immunol.,43(10):1645-1652(2006))。虽然一些Ramos细胞系表现出相对高的组成型高变率,但是B细胞系一般表现出相对低的细胞分裂速率并且难以高效转染,这限制了其用于定向进化的实际效用。

鸡法氏囊细胞系DT40通过假V基因模板基因转换来多样化其重排的Ig轻基因。然而,如果基因转换被Rad51种内同源基因XRCC2的缺失(Saleet al.,Nature,412:921-6(2001))或假基因转换供体的缺失(Arakawa et al.,Nucleic Acids Res.,36(1):e1(2008))阻断,该细胞系在培养中表现出组成型高变。与Ramos细胞相比,DT40细胞具有明显更短的世代时间(12小时),适合定向基因靶向并且成功用于内源抗体(Seo et al.,Nat.Biotechnol.,23(6):731-5(2005);Nat.Protoc.,1(3):1502-6(2006);Biotechnol.Genet.Eng.Rev.,24:179-93(2007);Todo et al.,J.Biosci.Bioeng.,102(5):478-81(2006))和非抗体蛋白(Arakawa et al.,Nucleic Acids Res.,36(1):e1(2008))的定向进化。

虽然诸如Ramos和DT40的B细胞衍生物成功用于定向进化,但是由于许多因素,在定向进化的稳健方法中可靠使用这些细胞是复杂的,所述因素包括:(i)需要将所关注的基因插入宿主细胞Ig基因座中的确定位点以实现高水平诱变(Parsa et al.,Mol Immunol.,44(4):567-75(2007),和(ii)这些细胞中在内源性免疫球蛋白基因座发挥作用的体细胞高变的复杂的自然生物学。此外,这样的工程细胞系在SHM率中表现出显著的克隆不稳定性(Zhang et al.,Int.Immunol.,13:1175-1184(2001),Martin et al.,Proc.Natl.Acad.Sci.USA.,99(19):12304-12308(2002)和Nature,415(6873):802-806(2002);Ruckerl et al.,Mol.Immunol.,41:1135-1143(2004)),并且不提供任何简单的方法以调节或控制高变,即在完成期望表型的选择之后关闭诱变。

许多研究组已成功描述了使用非B细胞在所关注的基因中启动靶向体细胞高变(Martin et al.,Proc.Natl.Acad.Sci.USA.,99(19):12304-12308(2002)和Nature,415(6873):802-806(2002);McBride et al.,Proc.Natl.Acad.Sci.USA,103(23):8798-803(2006);Jovanic et al.,PLoS ONE,23;3(1):e1480(2008);美国专利申请公开09/0075378;国际专利申请公开WO08/103474A1和WO 08/103475A1),而且这些细胞系还可以提供高效基因转移、高水平蛋白表达、最佳生长特征,并且很容易适合悬浮培养和流式细胞术。

活化诱导胞苷脱氨酶(AID)属于胞苷脱氨酶的APOBEC家族。AID在活化的B细胞内表达,并且是通过在编码抗体基因的基础DNA中产生点突变(Martin et al.,Proc.Natl.Acad.Sci.USA.,99(19):12304-12308(2002)和Nature,415(6873):802-806(2002);Petersen-Mart et al.,Nature,418(6893):99-103(2002))来启动体细胞高变(Muramatsu et al.,Cell,102(5):553-63(2000);Revy et al.,Cell,102(5):565-75(2000);Yoshikawa et al.,Science,296(5575):2033-6(2002))所需要的。AID还是类别转换重组和基因转换的必需蛋白因子(Muramatsu et al.,Cell,102(5):553-63(2000);Revy et al.,Cell,102(5):565-75(2000))。

AID负责启动体细胞高变的发现开启了使用体细胞高变的利用非B细胞系产生更多确定、稳定和可控的系统的可能性。

虽然有这些进展,但是仍然存在关于体细胞高变的实用系统开发的关键挑战,这包括(1)将体细胞高变靶向所关注的基因并远离结构基因的能力,(2)与体内体细胞高变相比利用外源AID所获得的相对低的突变率和突变性质,和(3)在诱变周期之间从单细胞克隆生长为细胞群体所需的相对长的细胞倍增时间。

因此,对改进的组合物和方法有特别需要以提高体细胞高变系统的效率。本发明提供了这样的组合物和方法。

发明概述

本发明提供了一种分离或纯化的核酸分子,其包含编码功能性突变活化诱导胞苷脱氨酶(AID)蛋白的核苷酸序列,所述功能性突变活化诱导胞苷脱氨酶(AID)蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于至少一个氨基酸取代。

在一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在选自残基34、残基82和残基156的残基处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基10处的至少一个氨基酸取代和在残基156处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基35处的至少一个氨基酸取代和在残基145处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基34处的至少一个氨基酸取代和在残基160处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基43处的至少一个氨基酸取代和在残基120处的至少一个氨基酸取代。

本发明还提供了一种分离或纯化的核酸分子,其包含编码功能性突变AID蛋白的核苷酸序列,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于至少两个氨基酸取代,其中至少一个取代在残基57处且至少一个取代在残基145或81处,并且其中所述功能性突变AID蛋白在细菌乳突形成(papillation)测定中与所述人AID蛋白相比活性提高至少10倍。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基156处的至少一个氨基酸取代和在残基82处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基156处的至少一个氨基酸取代和在残基34处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基156处的至少一个氨基酸取代和在残基157处的至少一个氨基酸取代。

在另一实施方案中,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于在残基10、82和156处的至少一个氨基酸取代。

本发明还提供了一种分离或纯化的核酸分子,其包含编码功能性突变活化诱导胞苷脱氨酶(AID)蛋白的核苷酸序列,所述功能性突变活化诱导胞苷脱氨酶(AID)蛋白的氨基酸序列与选自犬AID蛋白(SEQ ID NO:3)、小鼠(murine)AID蛋白(SEQ ID NO:4)、大鼠AID蛋白(SEQ ID NO:5)、牛AID蛋白(SEQ ID NO:6)和鸡AID蛋白(SEQ ID NO:7)的氨基酸序列的不同之处在于在选自残基34、残基82和残基156的残基处的至少一个氨基酸取代,其中所述功能性突变AID蛋白在细菌乳突形成测定中与所述人AID蛋白相比活性提高至少10倍。

本发明还提供了包含核酸分子的表达载体,所述核酸分子包含编码功能性突变活化诱导胞苷脱氨酶(AID)的核苷酸序列。

本发明还提供了分离的细胞,其包含编码功能性突变AID蛋白的核酸分子。

本发明还提供了转基因动物,其包含编码功能性突变AID蛋白的核酸分子。

本发明还提供了一种用于制备具有期望特性的基因产物的方法,所述方法包括在细胞群体中表达编码所述基因产物的核酸,其中所述细胞群体表达或能够被诱导以表达功能性突变AID蛋白,由此所述功能性突变AID蛋白的表达在编码所述基因产物的核酸中诱导突变。

本发明还提供了一种用于将生物体突变以具有期望表型的方法,所述方法包括在所述生物体中表达或诱导表达功能性突变AID蛋白,由此所述功能性突变AID蛋白的表达在所述生物体的染色体DNA内诱导突变。

附图说明

图1a包括表达或不表达人AID的细菌菌落中乳突的图像。图1b为量化表达人AID、APOBEC1(A1)或APOBEC3G(A3G)的细菌菌落中的乳突的柱状图。图1c为示出通过从人脾cDNA文库筛选乳突所获得的2个APOBEC3G cDNA的示意图。图1d包括表达所示AID蛋白的细菌菌落中乳突的图像,并且列出了相对于载体的突变频率。图1e包括作为阿拉伯糖浓度函数的AID Mut1.1乳突形成图像。图1f为示出人AID突变体的平板接种效率的图。

图2为说明选择乳突形成筛选中鉴定的人功能性AID突变体的图表。数字示出了相对于载体每个人AID突变体突变为Rifr的平均频率。

图3a为人AID的序列图,其说明在人和河豚(pufferfish)AID中鉴定的功能性突变的位置和性质。图3b通过蛋白印迹比较了GST-AID突变体融合蛋白的表达水平。图3c、d为量化GST-AID突变体融合蛋白的脱氨酶活性和靶标特异性的图。

图4a为说明选择乳突形成筛选中鉴定的河豚AID突变体的图表。图4b为比较在18℃和37℃下河豚AID突变体至Rifr的相对突变频率的柱状图。

图5a包括表达所示AID蛋白的单个DT40克隆中IgM和GFP表达的流式细胞术图。图5a还含有表达所示蛋白的12个独立克隆转染子中IgM缺失的图。图5b含有在转染的DT40细胞中观察到的IgVλ突变的分布图。图5b还含有示出分选IgM缺失之后IgVλ突变数的圆内扇形图。图5b还通过蛋白印迹示出了AID表达。图5c包括用所示反转录病毒转导的AID缺陷B细胞中转换至IgG1的流式细胞术图。图5c中的柱状图量化了相对于野生型AID的IgG1转换,并且图5c中的蛋白印迹通过蛋白印迹示出了AID表达。

图6a为说明c-myc和IgH基因座之间的相互易位以及示出用于检测易位的引物(箭头)和探针(P)的示意图。图6b为通过PCR扩增来自用所示反转录病毒转导的AID缺陷B细胞的基因组DNA之后来源于染色体15和12的c-myc-IgH易位的DNA印迹。

图7为LOGO比对,其说明细菌乳突形成筛选中鉴定的功能性突变带来更接近APOBEC3序列的AID序列。

图8列出了用于产生图7的哺乳动物AID和APOBEC3序列的GenBank/Ensembl登录号。

图9为人AID和河豚(河豚(fugu))AID的序列图,其说明鉴定的功能性突变的位置和性质。

图10a为实施例14所述的293-c18细胞实验中所用的AID序列的核酸序列比对。方框中的残基表示wt和7.3突变体序列之间的变化。图10b为实施例14所述的293-c18细胞实验中所用的AID序列的氨基酸序列比对。方框中的残基表示wt和7.3突变体序列之间的变化。MutE和Mut 7.3中L至A的突变使核输出信号失去功能。句点表示终止密码子,并且虚线指明没有相应氨基酸的位置。

发明详述

本发明提供了一种分离或纯化的核酸分子,其包含编码功能性突变AID蛋白的核苷酸序列,所述功能性突变AID蛋白的氨基酸序列与人AID蛋白的氨基酸序列(SEQ ID NO:1或SEQ ID NO:2)的不同之处在于至少一个氨基酸取代,其中所述功能性突变AID蛋白在细菌乳突形成测定中与所述人AID蛋白相比活性提高至少10倍。

“核酸分子”涵盖DNA或RNA的聚合物,即多核苷酸,其可以为单链或双链并且其可以含有非天然或改变的核苷酸。如本文所用的术语“核酸”和“多核苷酸”指任何长度的聚合形式的核苷酸,核糖核苷酸(RNA)或脱氧核糖核苷酸(DNA)。这些术语指分子的一级结构,并且因此包括双链和单链DNA以及双链和单链RNA。作为等同物,该术语包括由核苷酸类似物和修饰的多核苷酸形成的RNA或DNA类似物,所述核苷酸类似物和修饰的多核苷酸例如但不限于甲基化和/或加帽的多核苷酸。

如本文所用的术语“核苷酸”指多核苷酸的单体单元,其由杂环碱基、糖和一个或多个磷酸基团组成。天然存在的碱基(鸟嘌呤(G)、腺嘌呤(A)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U))为嘌呤或嘧啶的典型衍生物,虽然应当理解还包括天然和非天然存在的碱基类似物。天然存在的糖为戊糖(五碳糖)脱氧核糖(其形成DNA)或核糖(其形成RNA),虽然应当理解还包括天然或非天然存在的糖类似物。核酸典型地通过磷酸键连接以形成核酸或多核苷酸,虽然本领域已知许多其他键(例如,硫代磷酸酯、硼烷磷酸酯(boranophosphate)等)。

如本文所用的术语“合成多核苷酸”、“合成基因”或“合成多肽”表示相应的多核苷酸序列或其部分,或者氨基酸序列或其部分来源于与相当的天然存在的序列相比经设计、或从头合成、或修饰的序列。合成多核苷酸或合成基因可以通过本领域已知的方法制备,包括但不限于核酸或氨基酸序列的化学合成或者通过PCR(或相似的酶促扩增系统)扩增。合成基因通常在氨基酸水平或多核苷酸水平(或两者)与未修饰的基因或天然存在的基因不同,并且通常位于合成的表达控制序列之内。例如,合成基因序列可以包括通过例如一个或多个氨基酸或核苷酸的替代、缺失或添加来改变的氨基酸或多核苷酸序列,从而提供与源序列不同的氨基酸序列或多核苷酸编码序列。合成基因或多核苷酸序列可以不必需编码与天然基因相比具有不同氨基酸的蛋白。例如,其还可以涵盖并入不同但编码相同氨基酸的密码子的合成多核苷酸序列;即核苷酸变化在氨基酸水平代表沉默突变。在一实施方案中,与天然存在或未修饰的基因相比,合成基因表现出改变的对SHM的敏感性。利用本文所述方法可以迭代修饰合成基因,并且在每个连续迭代中,相应的多核苷酸序列或氨基酸序列整个或部分来源于与相当的未修饰的序列相比经设计、或从头合成、或修饰的序列。

如本文所用,“密码子”指当转录和翻译时编码单个氨基酸残基的3个核苷酸;或者在UUA、UGA或UAG的情况下编码终止信号。编码氨基酸的密码子为本领域众所周知。

最优密码子使用由表达基因的密码子使用频率表示,例如,如来自Wisconsin Sequence Analysis Package,Version 8.1,Genetics Computer Group,Madison,Wisc的程序“Human-High.cod”的密码子使用图所示。密码子使用还如R.Nussinov,“Eukaryotic Dinucleotide Preference Rules and TheirImplications for Degenerate Codon Usage,”J.Mol.Biol.,149:125-131(1981)所述。在高表达的人基因中最常使用的密码子据推测为在人宿主细胞中表达的最优密码子,并且因此形成构建合成编码序列的基础。

“分离”表示从其自然环境取得核酸。“纯化”表示无论从自然取得(包括基因组DNA和mRNA)或者在实验室条件下合成(包括cDNA)和/或扩增的给定核酸的纯度增加,其中“纯度”为相对术语,不是“绝对纯度”。然而,应当理解核酸和蛋白可以与稀释剂或辅助剂配制,并且仍然为了实用目的而分离。例如,当用于引入细胞时,核酸会与可接受的媒介物或稀释剂混合。

术语“活化诱导胞苷脱氨酶”或(“AID”)指能够介导DNA序列内胞嘧啶至尿嘧啶的脱氨基作用的RNA/DNA编辑胞苷脱氨酶的AID/APOBEC家族成员。(参见,例如,Conticello et al.,Mol.Biol.Evol.,22:367-377(2005)和美国专利6,815,194)。

术语“野生型AID”指天然存在的AID蛋白的氨基酸序列。合适的野生型AID蛋白包括所有脊椎动物形式的AID,包括,例如,灵长类、啮齿类、禽类和硬骨鱼。野生型AID氨基酸序列的代表性实例不限制地包括人AID(SEQ ID NO:1或SEQ ID NO:2)、犬AID(SEQ ID NO:3)、小鼠AID(SEQ ID NO:4)、大鼠AID(SEQ ID NO:5)、牛AID(SEQ ID NO:6)、鸡AID(SEQ ID NO:7)、猪AID(SEQ ID NO:8)、黑猩猩AID(SEQ ID NO:9)、猕猴AID(SEQ ID NO:10)、马AID(SEQ ID NO:11)、爪蟾AID(SEQ ID NO:12)、河豚(河豚)AID(SEQ ID NO:13)和斑马鱼(SEQ ID NO:14)。

术语“AID同系物”指Apobec家族的酶,并且包括,例如,Apobec-1、Apobec3C或Apobec3G(例如,Jarmuz et al.,Genomics,79:285-296(2002)所述)。术语“AID活性”包括AID和AID同系物介导的活性。

如本文所用的“AID突变体”或“AID的突变体”指与野生型AID氨基酸序列的不同之处在于至少一个氨基酸的AID氨基酸序列。可以通过本领域已知的任何合适的方法突变野生型氨基酸序列以产生AID突变体,例如,通过插入、缺失和/或取代。例如,可以随机或以位点特异性方式将突变引入编码野生型AID的核酸序列。例如,可以通过AID模板序列的易错PCR来产生随机突变。用于引入随机突变的优选方法为Genemorph II随机诱变试剂盒(Stratagene,LaJolla,CA)。例如,可以通过将包含修饰位点的合成寡核苷酸连接入表达载体来引入位点特异性突变。可选地,可以使用寡核苷酸定向位点特异性诱变方法,如Walder et al.,Gene,42:133(1986);Bauer et al.,Gene,37:73(1985);Craik,Biotechniques,12-19(January 1995);和美国专利第4,518,584号和第4,737,462号所公开的方法。用于引入位点特异性突变的优选方法为QuikChange位点定向诱变试剂盒(Stratagene,LaJolla,CA)。

术语“AID的功能性突变体”、“功能性AID突变体”或“功能性突变AID蛋白”每个均指保留野生型AID的所有或部分生物活性,或者表现出与野生型AID蛋白相比增加的生物活性的突变AID蛋白。野生型AID的生物活性包括但不限于在DNA序列内胞嘧啶至尿嘧啶的脱氨基作用,细菌诱变测定中的乳突形成,靶基因的体细胞高变和免疫球蛋白类别转换。突变AID蛋白可以保留野生型AID蛋白生物活性的任何部分。期望地,突变AID蛋白保留野生型AID生物活性的至少75%(例如,75%、80%、90%或更多)。优选地,突变AID蛋白保留野生型AID生物活性的至少90%(例如,90%、95%、100%或更多)。

在一优选实施方案中,突变AID蛋白表现出与野生型AID蛋白相比增加的生物活性。在这方面,当通过细菌乳突形成测定测量时,功能性AID突变体与野生型AID蛋白相比活性提高至少10倍。本领域已知细菌乳突形成测定对于筛选在DNA修复的某些方面缺陷的大肠杆菌(E.Coli)突变体是有用的(Nghiem et al.,Proc.Natl.Acad.Sci.USA,85:2709-2713(1988)和Ruiz et al.,J.Bacteriol.,175:4985-4989(1993))。细菌乳突形成测定可以采用在lacZ基因内含有错义突变的大肠杆菌(Escherichia coli)CC102细胞。大肠杆菌CC102细胞在MacConkey-乳糖平板上产生白色菌落。在这样的白色菌落内,常可以看见少量红色小菌落或“乳突(papilli)”(典型每个菌落0-2个),其反映自发产生的Lac+回复突变体。表现出升高的自发突变频率的细菌克隆(即,“增变克隆”)可以凭借增加的乳突数来鉴定。细菌乳突形成测定可以用于筛选与野生型AID相比具有增加的活性的功能性AID突变体。细菌乳突形成测定在实施例中详述。

在一实施方案中,在细菌乳突形成测定中功能性AID突变体与野生型AID蛋白相比活性提高至少10倍(例如,10倍、30倍、50倍或更多)。优选地,功能性AID突变体与野生型AID相比活性提高至少100倍(例如,100倍、200倍、300倍或更多)。更优选地,功能性AID突变体与野生型AID相比活性提高至少400倍(例如,400倍、500倍、1000倍或更多)。

功能性突变AID蛋白包含与野生型AID蛋白的氨基酸序列的不同之处在于至少一个氨基酸取代的氨基酸序列。野生型AID蛋白可以是任何脊椎动物AID蛋白,包括本文所述的AID蛋白。期望地,野生型AID蛋白为人AID蛋白,其有至少两种已知变体(即,SEQ ID NO:1和SEQ ID NO:2)。其他脊椎动物AID蛋白包括但不限于犬AID(SEQ ID NO:3)、小鼠AID(SEQ ID NO:4)、大鼠AID(SEQ ID NO:5)、牛AID(SEQ ID NO:6)、鸡AID(SEQ ID NO:7)、猪AID(SEQ ID NO:8)、黑猩猩AID(SEQ ID NO:9)、猕猴AID(SEQ ID NO:10)、马AID(SEQ ID NO:11)、爪蟾AID(SEQ ID NO:12)、河豚(河豚)AID(SEQ ID NO:13)或斑马鱼(SEQ ID NO:14)。

本领域普通技术人员会理解虽然在脊椎动物AID蛋白之间有高度同源性,但是相对于人AID(SEQ ID NO:1或SEQ ID NO:2)在每种脊椎动物AID蛋白中有可变数量的氨基酸取代、缺失和插入。因此,本发明涵盖并入在任何脊椎动物AID蛋白的类似位置的本文所述的突变。本领域普通技术人员可以通过利用任何本领域已知的基于计算机的比对程序(例如,BLAST或ClustalW2)进行同源脊椎动物AID蛋白与人AID(SEQ ID NO:1或SEQ ID NO:2)的序列比对来确定任何脊椎动物AID蛋白中的类似位置。

野生型AID蛋白典型地在该蛋白的C端附近含有核输出序列。在本发明的一实施方案中,可以突变介导野生型AID的核输出的一个残基或多个残基,并且可以产生功能性突变AID蛋白,其包含与具有突变的核输出序列的AID蛋白的氨基酸序列的不同之处在于至少一个额外的氨基酸取代的氨基酸序列。具有可以作为参考序列的突变核输出序列的犬AID蛋白的实例包括L198A突变体(SEQ ID NO:70)以及D187E、D188E、D191E、T195I和L198A突变体(SEQ ID NO:71),本文鉴定为产生功能性AID突变体的突变可以插入所述核输出序列。

氨基酸“取代”指多肽序列内在给定位置的一个氨基酸或一个残基被在相同位置的另一个氨基酸或另一个残基代替。

氨基酸大体上分为“芳香族”或“脂肪族”。芳香族氨基酸包含芳环。“芳香族”氨基酸的实例包括组氨酸(H或His)、苯丙氨酸(F或Phe)、酪氨酸(Y或Tyr)和色氨酸(W或Trp)。非芳香族氨基酸大体上分类为“脂肪族”。“脂肪族”氨基酸的实例包括甘氨酸(G或Gly)、丙氨酸(A或Ala)、缬氨酸(V或Val)、亮氨酸(L或Leu)、异亮氨酸(I或Ile)、甲硫氨酸(M或Met)、丝氨酸(S或Ser)、苏氨酸(T或Thr)、半胱氨酸(C或Cys)、脯氨酸(P或Pro)、谷氨酸(E或Glu)、天冬氨酸(A或Asp)、天冬酰胺(N或Asn)、谷氨酰胺(Q或Gln)、赖氨酸(K或Lys)和精氨酸(R或Arg)。

脂肪族氨基酸可以细分为4个亚类。“大脂肪族非极性亚类”由缬氨酸、亮氨酸和异亮氨酸组成,“脂肪族轻微极性亚类”由甲硫氨酸、丝氨酸、苏氨酸和半胱氨酸组成,“脂肪族极性/带电亚类”由谷氨酸、天冬氨酸、天冬酰胺、谷氨酰胺、赖氨酸和精氨酸组成,以及“小残基亚类”由甘氨酸和丙氨酸组成。带电/极性氨基酸类可以细分为3个亚类:由赖氨酸和精氨酸组成的“带正电亚类”,由谷氨酸和天冬氨酸组成的“带负电亚类”以及由天冬酰胺和谷氨酰胺组成的“极性亚类”。

芳香族氨基酸可以细分为2个亚类:由组氨酸和色氨酸组成的“氮环亚类”以及由苯丙氨酸和酪氨酸组成的“苯基亚类”。

短语“保守性氨基酸取代”或“保守性突变”指一个氨基酸被另一个具有共同特性的氨基酸代替。定义单个氨基酸之间的共同特性的实用方法是分析同源生物的相应蛋白之间氨基酸变化的归一化频率(Schulz,G.E.andR.H.Schirmer,Principles of Protein Structure,Springer-Verlag,New York(1979))。根据这样的分析,可以定义氨基酸类别,其中类别内的氨基酸优选互相交换,并且因此它们对整体蛋白结构的影响互相最相似(Schulz,G.E.and R.H.Schirmer,见上文)。

保守性突变的实例包括上文亚类之内氨基酸的氨基酸取代,例如,赖氨酸取代精氨酸并且反之亦然,从而可以保持正电荷;谷氨酸取代天冬氨酸并且反之亦然,从而可以保持负电荷;丝氨酸取代苏氨酸,从而可以保持游离的-OH;以及谷氨酰胺取代天冬酰胺,从而可以保持游离的-NH2

“半保守性突变”包括具有上文所列相同类别的氨基酸的氨基酸取代,其不共享相同的亚类。例如,天冬氨酸突变为天冬酰胺或天冬酰胺突变为赖氨酸,每个涉及在相同类别但是不同亚类之内的氨基酸。

“非保守性突变”涉及不同类别之间的氨基酸取代,例如赖氨酸取代色氨酸或苯丙氨酸取代丝氨酸等。

在一优选实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在选自残基34、残基82和残基156的残基处的至少一个氨基酸取代。可以单独或任意组合取代这些残基。在取代残基34赖氨酸(K)的实施方案中,优选用谷氨酸(E)或天冬氨酸(D)残基取代。在取代残基82苏氨酸(T)的实施方案中,优选用异亮氨酸(I)或亮氨酸(L)残基取代。在取代残基156谷氨酸(E)的实施方案中,优选用甘氨酸(G)或丙氨酸(A)残基取代。此外,当取代氨基酸残基156时(单独或与在残基34和/或残基82处的取代组合),还可以期望用在残基9、13、38、42、96、115、132、157、180、181、183、197、198或其组合处的氨基酸取代产生功能性AID突变蛋白。特别地,(a)在残基9处的氨基酸取代可以为甲硫氨酸(M)或赖氨酸(K),(b)在残基13处的氨基酸取代可以为苯丙氨酸(F)或色氨酸(W),(c)在残基38处的氨基酸取代可以为甘氨酸(G)或丙氨酸(A),(d)在残基42处的氨基酸取代可以为异亮氨酸(I)或亮氨酸(L),(e)在残基96处的氨基酸取代可以为甘氨酸(G)或丙氨酸(A),(f)在残基115处的氨基酸取代可以为酪氨酸(Y)或色氨酸(W),(g)在残基132处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(h)在残基180处的氨基酸取代可以为异亮氨酸(I)或丙氨酸(A),(i)在残基181处的氨基酸取代可以为甲硫氨酸(M)或缬氨酸(V),(j)在残基183处的氨基酸取代可以为异亮氨酸(I)或脯氨酸(P),(k)在残基197处的氨基酸取代可以为精氨酸(R)或赖氨酸(K),(l)在残基198处的氨基酸取代可以为缬氨酸(V)或亮氨酸(L),和(m)在残基157处的氨基酸取代可以为苏氨酸(T)或赖氨酸(K)。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基10处的至少一个氨基酸取代和在残基156处的至少一个氨基酸取代。可以单独或以任意组合取代这些残基。在取代氨基酸残基10(赖氨酸)的实施方案中,优选用谷氨酸(E)或天冬氨酸(D)残基取代。在取代残基156(谷氨酸)的实施方案中,优选用甘氨酸(G)或丙氨酸(A)残基取代。在取代在残基10和156处的氨基酸的实施方案中,还可以期望包括在残基13、34、82、95、115、120、134、145或其组合处的氨基酸取代。特别地,(a)在残基13处的氨基酸取代可以为苯丙氨酸(F)或色氨酸(W),(b)在残基34处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(c)在残基82处的氨基酸取代可以为异亮氨酸(I)或亮氨酸(L),(d)在残基95处的氨基酸取代可以为丝氨酸(S)或亮氨酸(L),(e)在残基115处的氨基酸取代可以为酪氨酸(Y)或色氨酸(W),(f)在残基120处的氨基酸取代可以为精氨酸(R)或天冬酰胺(N),和(g)在残基145处的氨基酸取代可以为亮氨酸(L)或异亮氨酸(I)。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基35处的至少一个氨基酸取代和在残基145处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基35和145处的氨基酸。优选用甘氨酸(G)或丙氨酸(A)取代在残基35处的氨基酸。优选用亮氨酸(L)或异亮氨酸(I)取代在残基145处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基34处的至少一个氨基酸取代和在残基160处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基34和160处的氨基酸。优选用谷氨酸(E)或天冬氨酸(D)取代在残基34处的氨基酸。优选用谷氨酸(E)或天冬氨酸(D)取代在残基160处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基43处的至少一个氨基酸取代和在残基120处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基43和120处的氨基酸。优选用脯氨酸(P)取代在残基43处的氨基酸。优选用精氨酸(R)取代在残基120处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于至少两个氨基酸取代,其中至少一个取代在残基57处并且至少一个取代在残基145或81处。可以单独或以任意组合取代这些残基(例如,残基57和145的取代或者残基57和81的取代)。优选地,用甘氨酸(G)或丙氨酸(A)取代在残基57处的氨基酸。当取代在残基145处的氨基酸时,优选用亮氨酸(L)或异亮氨酸(I)取代。当取代在残基81处的氨基酸时,优选用酪氨酸(Y)或色氨酸(W)取代。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基156处的至少一个氨基酸取代和在残基82处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基156和82处的氨基酸。优选用甘氨酸(G)或丙氨酸(A)取代在残基156处的氨基酸。优选用亮氨酸(L)或异亮氨酸(I)取代在残基82处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基156处的至少一个氨基酸取代和在残基34处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基156和34处的氨基酸。用甘氨酸(G)或丙氨酸(A)取代在残基156处的氨基酸。优选用谷氨酸(E)或天冬氨酸(D)取代在残基34处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基156处的至少一个氨基酸取代和在残基157处的至少一个氨基酸取代。可以用任何合适的氨基酸取代在残基156和157处的氨基酸。优选用甘氨酸(G)或丙氨酸(A)取代在残基156处的氨基酸。优选用精氨酸(R)或天冬酰胺(N)取代在残基120处的氨基酸。

在另一实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基10、82和156处的至少一个氨基酸取代。可以单独或以任意组合取代这些残基。在一优选实施方案中,所述核酸分子编码功能性AID突变体,所述功能性AID突变体的氨基酸序列与野生型AID的氨基酸序列的不同之处在于在残基10、82和156处的氨基酸取代。在取代在残基10、82和156处的氨基酸的实施方案中,还可以期望包括在残基9、15、18、30、34、35、36、44、53、59、66、74、77、88、93、100、104、115、118、120、142、145、157、160、184、185、188、192或其组合处的氨基酸取代。特别地,(a)在残基9处的氨基酸取代可以为丝氨酸(S)、甲硫氨酸(M)或色氨酸(W),(b)在残基10处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(c)在残基15处的氨基酸取代可以为酪氨酸(Y)或亮氨酸(L),(d)在残基18处的氨基酸取代可以为丙氨酸(A)或亮氨酸(L),(e)在残基30处的氨基酸取代可以为酪氨酸(Y)或丝氨酸(S),(f)在残基34处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(g)在残基35处的氨基酸取代可以为丝氨酸(S)或赖氨酸(K),(h)在残基36处的氨基酸取代可以为半胱氨酸(C),(i)在残基44处的氨基酸取代可以为精氨酸(R)或赖氨酸(K),(j)在残基53处的氨基酸取代可以为酪氨酸(Y)或谷氨酰胺(Q),(k)在残基57处的氨基酸取代可以为丙氨酸(A)或亮氨酸(L),(l)在残基59处的氨基酸取代可以为甲硫氨酸(M)或丙氨酸(A),(m)在残基66处的氨基酸取代可以为苏氨酸(T)或丙氨酸(A),(n)在残基74处的氨基酸取代可以为组氨酸(H)或赖氨酸(K),(o)在残基77处的氨基酸取代可以为丝氨酸(S)或赖氨酸(K),(p)在残基82处的氨基酸取代可以为异亮氨酸(I)或亮氨酸(L),(q)在残基88处的氨基酸取代可以为丝氨酸(S)或苏氨酸(T),(r)在残基93处的氨基酸取代可以为亮氨酸(L)、精氨酸(R)或赖氨酸(K),(s)在残基100处的氨基酸取代可以为谷氨酸(E)、色氨酸(W)或苯丙氨酸F,(t)在残基104处的氨基酸取代可以为异亮氨酸(I)或丙氨酸(A),(u)在残基115处的氨基酸取代可以为酪氨酸(Y)或亮氨酸(L),(v)在残基118处的氨基酸取代可以为谷氨酸(E)或缬氨酸(V),(x)在残基120处的氨基酸取代可以为精氨酸(R)或亮氨酸(L),(y)在残基142处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(z)在残基145处的氨基酸取代可以为亮氨酸(L)或酪氨酸(Y),(aa)在残基156处的氨基酸取代可以为甘氨酸(G)或丙氨酸(A),(bb)在残基157处的氨基酸取代可以为甘氨酸(G)或赖氨酸(K),(cc)在残基160处的氨基酸取代可以为谷氨酸(E)或天冬氨酸(D),(dd)在残基184处的氨基酸取代可以为天冬酰胺(N)或谷氨酰胺(Q),(ee)在残基185处的氨基酸取代可以为甘氨酸(G)或天冬氨酸(D),(ff)在残基188处的氨基酸取代可以为甘氨酸(G)或谷氨酸(E),和(gg)在残基192处的氨基酸取代可以为苏氨酸(T)或丝氨酸(S)。

功能性AID突变蛋白与野生型AID蛋白的不同之处可以在于单独或任意组合的本文所公开的任何氨基酸取代。可选地,与野生型AID氨基酸序列(例如,人AID氨基酸序列SEQ ID NO:1或SEQ ID NO:2)相比,功能性AID突变蛋白可以具有额外的氨基酸取代。例如,功能性AID突变蛋白可以具有关于SEQ ID NO:1或SEQ ID NO:2的以下氨基酸取代的任一种或以下氨基酸取代的组合:N7K、R8Q、Q14H、R25H、Y48H、N52S、H156R、R158K、L198A、R9K、G100W、A138G、S173T、T195I、F42C、A138G、H156R、L198F、M6K、K10Q、A39P、N52A、E118D、K10L、Q14N、N52M、D67A、G100A、V135A、Y145F、R171H、Q175K、R194K、在残基118之后插入K、和D119E。

本发明还提供了编码包含C端截短突变的功能性AID突变体的核酸分子。C端截短突变的产生在本领域普通技术之内,并且可以根据例如上文所述用于产生AID突变体的方法进行。例如,可以通过在AID氨基酸序列的残基181处或在残基181的远端插入终止密码子来产生C端截短突变。

在本发明的上下文中产生功能性AID突变蛋白的优选氨基酸取代的实例如图2所示。

在本发明的上下文中,功能性AID突变体还包括编码野生型AID蛋白的核酸序列,其中部分该核酸序列缺失并用来自AID同系物(例如,Apobec-1、Apobec3C或Apobec3G)的核酸序列代替。在这方面,人APOBEC3蛋白像人AID一样能够将DNA中的胞嘧啶(C)脱氨基,然而AID优选靶向位于5’-侧翼嘌呤侧面的C残基,APOBEC3优选5’-嘧啶侧翼,对于特异性5’-侧翼核苷酸偏好单个APOBEC3是不同的。人APOBEC3基因序列的比较提示位于距蛋白的羧基端约60个残基的一段约8个氨基酸的结构域在决定这个侧翼核苷酸偏好中起着重要作用。鉴于APOBEC2的晶体结构和与寡核苷酸底物形成复合物的TadA tRNA-腺苷脱氨酶的晶体结构,AID和APOBEC3中的这60个氨基酸序列可能形成与DNA底物的接触。因此,在本发明的一实施方案中,功能性AID突变体可以包含编码野生型AID蛋白的核酸序列,其中去除人AID的氨基酸残基115-223,并且用来自APOBEC3蛋白(例如,APOBEC3C、APOBec3F和APOBEC3G)的相应序列代替。

本发明还提供了编码融合蛋白的核酸分子,所述融合蛋白包含符合读框(in frame)地融合在一起的功能性AID突变体和第二多肽。例如,融合蛋白的产生在本领域普通技术之内,并且可以涉及使用限制性内切酶或重组克隆技术。

在一实施方案中,所述融合蛋白的第二多肽可以包含“核定位信号”或“NLS”。术语“核定位信号”和“NLS”指能够介导蛋白或多核苷酸的核输入或者其滞留在细胞核内的结构域或多个结构域。“强核输入信号”代表当可操作地连接至所关注的蛋白时能够介导大于90%亚细胞定位在核中的结构域或多个结构域。NLS的代表性实例包括但不限于单组分核定位信号、双组分核定位信号以及N端和C端基序。N端碱性结构域通常符合共有序列K-K/R-X-K/R,其最初在SV40大T抗原中发现并且代表单组分NLS。N端碱性结构域NLS的一个非限制性实例为PKKKRKV(SEQ ID NO:76)。还已知双组分核定位信号,其含有被约10个氨基酸的间隔分开的两簇碱性氨基酸,如来自核质蛋白的NLS所例示:KR[PAATKKAGQA]KKKK(SEQ ID NO:77)。N端和C端基序包括,例如,hnRNP A1的酸性M9结构域,酵母转录阻抑物Matα2中的序列KIPIK(SEQ ID NO:78)和U snRNP的复合信号。这些NLS的大部分看来直接被输入蛋白β家族的特异性受体识别。

在另一实施方案中,所述第二多肽可以为本领域已知的融合伴侣以促进纯化并提高其融合的多肽的溶解度,例如,多聚组氨酸标签、NusA、细菌铁蛋白(BFR)、GrpE、硫氧还蛋白(TRX)或谷胱甘肽-S-转移酶(GST)。融合蛋白的纯化在本领域普通技术之内。

在另一实施方案中,所述第二多肽可以为报告多肽,如自发荧光蛋白(例如,GFP、EGFP)。自发荧光蛋白提供用于鉴定所关注的多核苷酸(和多肽产物)的表达的容易测定。因为可以利用流式分选仪定量监测报告多肽的活性(和由此推断其表达水平),可以顺序或在大量群体中测定许多独立的转染子。然后可以从群体筛选或选择具有最好表达的细胞。当选择包含本发明的功能性AID突变体的重组细胞时这是有用的。

在本发明的另一实施方案中,可以将编码本发明的功能性AID突变体的核酸分子密码子优化以减少或增加体细胞高变(SHM)基序的数量。如本文所用,“体细胞高变”或“SHM”指由AID、功能性AID突变体、尿嘧啶糖基化酶和/或易错聚合酶对多核苷酸序列的作用所启动或与之相关的多核苷酸序列的突变。该术语包括作为初期损害的易错修复的结果而发生的诱变,包括错配修复机制和相关酶所介导的诱变。

术语“SHM的底物”指AID和/或易错DNA聚合酶所作用的合成或半合成多核苷酸序列,以便在该合成或半合成多核苷酸序列的核酸序列中产生变化。

如本文所用,术语“SHM热点”或“热点”指如通过抗体基因中SHM突变的统计学分析所确定的,表现出进行体细胞高变的趋势增加的3-6个核苷酸的多核苷酸序列或基序。同样地,如本文所用,“SHM冷点”或“冷点”指如通过抗体基因中SHM突变的统计学分析所确定的,表现出进行体细胞高变的趋势减少的3-6个核苷酸的多核苷酸或基序。各种SHM的基序的相对排名以及抗体基因中的典型热点和冷点如美国专利申请公开09/0075378和国际专利申请公开WO 08/103475所述,并且可以如其中所述将统计学分析外推至非抗体基因(例如,AID基因)中SHM突变的分析。

术语“体细胞高变基序”或“SHM基序”指包括或可以改变为包括一个或多个热点或冷点的多核苷酸序列,并且其编码一组确定的氨基酸。SHM基序可以为任何大小,但是便于基于大小为约2至约20个核苷酸,或者大小为约3至约9个核苷酸的多核苷酸。SHM基序可以包括热点和冷点的任何组合,或者可以缺少热点或冷点。

术语“优选热点SHM密码子”、“优选热点SHM基序”、“优选SHM热点密码子”和“优选SHM热点基序”均指密码子,其包括但不限于密码子AAC、TAC、TAT、AGT或AGC。这样的序列可以潜在嵌入更大的SHM基序的背景之内,募集SHM介导的诱变并且在该密码子产生靶向氨基酸多样性。

如本文所用,如果已改变核酸序列或其部分以增加或减少所述核酸序列内热点和/或冷点的频率和/或位置,则所述核酸序列已“为SHM而被优化”。如果已改变核酸序列或其部分以增加所述核酸序列内热点的频率和/或位置,或者以减少所述核酸序列内冷点的频率(密度)和/或位置,则已使所述核酸序列“对SHM敏感”。相反地,如果已改变核酸序列或其部分以减少所述核酸序列开放阅读框内热点的频率(密度)和/或位置,则已使所述核酸序列“对SHM耐受”。总的来说,可以通过改变密码子使用和/或核酸序列所编码的氨基酸来产生序列,使其具有进行SHM介导的诱变的更大或更小的倾向。

核酸序列的优化指修饰所述核酸序列中约1%、约2%、约3%、约4%、约5%、约10%、约20%、约25%、约50%、约75%、约90%、约95%、约96%、约97%、约98%、约99%、约100%或其中任何范围的核苷酸。多核苷酸序列的优化还指修饰所述核酸序列中约1个、约2个、约3个、约4个、约5个、约10个、约20个、约25个、约50个、约75个、约90个、约95个、约96个、约97个、约98个、约99个、约100个、约200个、约300个、约400个、约500个、约750个、约1000个、约1500个、约2000个、约2500个、约3000个或更多个或者其中任何范围的核苷酸,从而为SHM介导的诱变优化一些或所有核苷酸。减少热点和/或冷点的频率(密度)指在核酸序列中减少约1%、约2%、约3%、约4%、约5%、约10%、约20%、约25%、约50%、约75%、约90%、约95%、约96%、约97%、约98%、约99%、约100%或其中任何范围的热点或冷点。增加热点和/或冷点的频率(密度)指在核酸序列中增加约1%、约2%、约3%、约4%、约5%、约10%、约20%、约25%、约50%、约75%、约90%、约95%、约96%、约97%、约98%、约99%、约100%或其中任何范围的热点或冷点。

热点或冷点的位置或阅读框也是控制SHM介导的诱变是否可以导致对于所得氨基酸序列沉默的突变,或者在氨基酸水平引起保守性、半保守性或非保守性变化的因素。可以操纵设计参数以进一步增加核苷酸序列对SHM的相对敏感性或耐受性。因此在SHM敏感和SHM耐受核酸序列的设计中考虑到SHM募集程度和基序的阅读框。

本发明还提供了一种包含编码功能性AID突变体的核酸分子的载体。“载体”或“克隆载体”为复制子,如质粒、噬菌体或粘粒,可以将另一多核苷酸片段引入其中,以导致所插入片段的复制。载体典型地作为环状、双链DNA存在,并且大小范围从几千碱基(kb)至几百kb。从天然存在的质粒修饰优选克隆载体以促进多核苷酸序列的克隆和重组操作。许多这样的载体为本领域众所周知;参见例如,Sambrook et al,“Molecular Cloning:ALaboratory Manual,”second edition,Cold Spring Harbor Laboratory,(1989),和Maniatis et al.,Cell Biology:A Comprehensive Treatise,Vol.3,GeneSequence Expression,Academic Press,NY,pp.563-608(1980)。

如本文所用的术语“表达载体”指用于在宿主细胞或体外表达系统内表达某些多核苷酸的载体。该术语包括质粒、附加体、粘粒、反转录病毒或噬菌体。表达载体可以用于表达编码期望蛋白的DNA序列,并且在一方面包括转录单元,所述转录单元包含一套表达控制序列。启动子和其他调控元件的选择一般根据预期的宿主细胞或体外表达系统变化。

如本文所用,“体外表达系统”指使得能够转录或者偶联转录和翻译DNA模板的无细胞系统。这样的系统包括,例如,兔网织红细胞系统以及新的无细胞合成系统(J.Biotechnol.,110:257-63(2004);Biotechnol.Annu.Rev.,10:1-30(2004))。

“表达控制序列”为DNA调控序列,如启动子、增强子、多腺苷酸化信号、转录终止子、内部核糖体进入位点(IRES)等,其在宿主细胞中提供编码序列的表达。示例性表达控制序列为本领域已知并且如Goeddel;GeneExpression Technology:Methods in Enzymology 185,Academic Press,SanDiego,Calif.(1990)所述。

“启动子”是能够在细胞中结合RNA聚合酶并启动下游(3′方向)编码序列转录的DNA序列。如本文所用,启动子序列的界限在其3′端转录起始位点并向上游(5′方向)延伸至包括启动在背景以上可检测水平的转录所必需的最低数目的碱基或元件。在启动子序列内会发现转录起始位点(通过用S1核酸酶作图方便地定义)以及负责结合RNA聚合酶的蛋白结合结构域(共有序列)。真核启动子会经常但不总是含有“TATA”框和“CAT”框。原核启动子除-10和-35共有序列之外还含有夏因-达尔加诺(Shine-Dalgarno)序列。

来自各种不同来源的大量启动子为本领域众所周知,包括组成型、诱导型和阻抑型启动子。代表性来源包括例如,病毒、哺乳动物、昆虫、植物、酵母和细菌细胞类型,并且基于在线上可公开获得的序列或者从诸如ATCC以及其他商业或个人来源的保藏中心,来自这些来源的合适的启动子可以很容易获得或者合成。启动子可以为单向(即,启动一个方向的转录)或双向(即,启动3’或5’方向的转录)。启动子的非限制性实例包括,例如,T7细菌表达系统、pBAD(araA)细菌表达系统、巨细胞病毒(CMV)启动子、SV40启动子、RSV启动子。诱导型启动子包括Tet系统(美国专利第5,464,758号和第5,814,618号)、蜕皮素诱导系统(No et al.,Proc.Natl.Acad.Sci.,93:3346-3351(1996)、T-RExTM系统(Invitrogen,Carlsbad,CA)、LacSwitch(Stratagene,San Diego,CA)和Cre-ERT三苯氧胺诱导重组酶系统(Indra et al.,Nuc.Acid.Res.,27:4324-4327(1999);Nuc.Acid.Res.,28:e99(2000);美国专利7,112,715)。一般参见Kramer & Fussenegger,Methods Mol.Biol.,308:123-144(2005))或者本领域已知的适合在期望细胞中表达的任何启动子。

如果使用诱导系统,如Tet控制的系统,可以将多西环素加入培养基以诱导编码功能性AID突变体的核酸在通过适当的测定分析之前表达一段时间(例如,1小时(hr)、2hr、4hr、6hr、8hr、10hr、15hr、20hr、24hr或任何其他时间)。可以允许细胞生长一定时间以提供持续的多样化,例如,1-3个细胞世代,或者在某些情况下3-6个世代,或者在某些情况下6-10个世代,或者更长。

如本文所用,“最小启动子”指部分启动子序列,其定义转录起始位点但如果完全通过其本身则不能有效地启动转录。这样的最小启动子的活性依赖于诸如四环素控制的反式激活蛋白的激活蛋白的结合以可操作地连接至结合位点。

术语“IRES”或“内部核糖体进入位点”指发挥作用以增强用多顺反子信使RNA编码的编码序列的翻译的多核苷酸原件。IRES原件通过直接募集和结合核糖体至信使RNA(mRNA)分子来介导翻译的启动,避开典型核糖体扫描中涉及的7-甲基鸟苷帽。IRES序列的存在可以增加期望蛋白的帽独立翻译的水平。早期出版物描述性地将IRES序列称为“翻译增强子”。例如,心脏病毒RNA“翻译增强子”,如美国专利第4,937,190和第5,770,428号所述。

如本文所用的术语“增强子”指增加例如其可操作连接的基因或编码序列的转录的DNA序列。增强子可以距离编码序列许多千碱基,并且可以介导调控因子的结合、DNA甲基化的模式或DNA结构的变化。来自各种不同来源的大量增强子为本领域众所周知,并且可以作为克隆多核苷酸或在克隆多核苷酸内获得(从,例如,诸如ATCC以及其他商业或个人来源的保藏中心)。许多包含启动子(如常用的CMV启动子)的多核苷酸还包含增强子序列。可操作地连接的增强子可以位于编码序列的上游、内部或下游。术语“Ig增强子”指来源于定位在Ig基因座之内的增强子区的增强子元件(这样的增强子包括例如,重链(μ)5′增强子、轻链(κ)5′增强子、κ和μ内含增强子,以及3′增强子(一般参见Paul WE(ed)Fundamental Immunology,3rdEdition,Raven Press,New York(1993)pages 353-363;美国专利5,885,827))。

“终止序列”是导致转录终止的序列。终止序列为本领域已知,并且包括但不限于poly A(例如,Bgh Poly A和SV40 Poly A)终止子。转录终止信号会典型地包括3′非翻译区的区域(或“3′ut”)、任选的内含子(也称为间插序列或“IVS”)以及一个或多个多腺苷酸化信号(“p(A)”或“pA”)。终止序列还可以称为“IVS-pA”、“IVS+p(A)”、“3′ut+p(A)”或“3′ut/p(A)”。天然或合成的终止子可以用作终止区。

术语“多腺苷酸化”、“多腺苷酸化序列”和“多腺苷酸化信号”、“PolyA”、“p(A)”或“pA”指存在于RNA转录物中的核酸序列,当多聚腺嘌呤(polyadenyl)转移酶存在时其允许该转录物被多腺苷酸化。本领域已知许多多腺苷酸化信号。非限制性实例包括人变异生长激素多腺苷酸化信号、SV40晚期多腺苷酸化信号和牛生长激素多腺苷酸化信号。

“游离型表达载体”能够在宿主细胞中复制,并且在适当的选择压力存在下在宿主细胞内作为染色体外DNA片段存在(参见,例如,Conese et al.,Gene Therapy 11:1735-1742(2004))。代表性可商购的游离型表达载体包括但不限于利用EB病毒核抗原1(Epstein Barr Nuclear Antigen 1,EBNA1)和EB病毒(EBV)复制起点(oriP)的游离型质粒。来自Invitrogen的载体pREP4、pCEP4、pREP7,来自Invitrogen的pcDNA3.1和来自Stratagene的pBK-CMV代表使用T-抗原和SV40复制起点代替EBNA1和oriP的游离型载体的非限制性实例。

“整合型表达载体”可以随机整合入宿主细胞的DNA,或者可以包括重组位点以使得表达载体和宿主细胞染色体之间能够特异性重组。这样的整合型表达载体可以利用宿主细胞染色体的内源表达控制序列来影响期望蛋白的表达。以位点特异性方式整合的载体的实例包括,例如,来自Invitrogen的flp-in系统的组件(例如,pcDNATM5/FRT),或者cre-lox系统,如可以在来自Stratagene的pExchange-6核心载体中发现。以随机方式整合入宿主细胞染色体的载体的实例包括,例如,来自Invitrogen的pcDNA3.1(当在没有T-抗原的情况下引入时),来自Promega的pCI或pFN10A(ACT)Flexi

代表性可商购的病毒表达载体包括但不限于可从Crucell,Inc.获得的基于腺病毒的Per.C6系统,来自Invitrogen的基于慢病毒的pLP1,和来自Stratagene的反转录病毒载体pFB-ERV加上pCFB-EGSH。

可选地,表达载体可以用于将强启动子或增强子序列引入和整合入细胞中的基因座,以便调节所关注的内源基因的表达(Capecchi MR.Nat RevGenet.,6(6):507-12(2005);Schindehutte et al.,Stem Cells,23(1):10-5(2005))。这种方法还可以用于将诸如Tet-On启动子(美国专利第5,464,758号和第5,814,618号)的诱导型启动子插入细胞的基因组DNA,以便提供所关注的内源基因的诱导型表达。激活构建体还可以包括靶向序列以使激活序列能够同源或非同源重组入对所关注的基因特异性的期望基因座(参见,例如,Garcia-Otin and Guillou,Front.Biosci.,11:1108-36(2006))。可选地,诸如Cre-ER系统的诱导性重组酶系统可以用于在4-羟基三苯氧胺存在下激活转基因。(Indra et al.,Nuc.Acid.Res.,27(22):4324-4327(1999);Nuc.Acid.Res.,28(23):e99(2000);美国专利7,112,715)。

本发明的载体可以包含“选择标记基因”。如本文所用的术语“选择标记基因”指在相应选择剂的存在下允许携带多核苷酸的细胞被特异性选择或不选择的多核苷酸。选择标记可以为正、负或双功能的。正选择标记允许选择携带该标记的细胞,而负选择标记允许携带该标记的细胞被选择性消除。选择标记多核苷酸可以直接连接至待表达的多核苷酸,或者通过共转染引入相同细胞。已描述了各种这样的标记多核苷酸,包括,例如,双功能(即正/负)标记(参见,例如,国际专利申请公开WO 92/08796和WO94/28143),耐药基因(例如,氨苄青霉素),和赋予细胞抑制药或杀细胞药抗性的蛋白(例如,DHFR蛋白)(参见,例如,Wigler et al.,Proc.Natl.Acad.Sci.USA,77:3567(1980),O′Hare et al.,Proc.Natl.Acad.Sci.USA,78:1527(1981),Mulligan & Berg,Proc.Natl.Acad.Sci.USA,78:2072(1981),Colberre-Garapin et al.,J.Mol.Biol.,150:1(1981),Santerre et al.,Gene,30:147(1984),Kent et al.,Science,237:901-903(1987),Wigler et al.,Cell,11:223(1977),Szybalska & Szybalski,Proc.Natl.Acad.Sci.USA,48:2026(1962),Lowy et al.,Cell,22:817(1980),和美国专利第5,122,464号和第5,770,359号)。

所述载体可以包含“报告基因”。“报告基因”指典型地当用所关注的细胞表达时赋予被特异性检测(或者检测和选择)能力的多核苷酸。本领域已知许多报告基因系统,并且包括例如碱性磷酸酶(Berger,J.,et al.,Gene,66:1-10(1988);Kain,SR.,Methods Mol.Biol.,63:49-60(1997))、β-半乳糖苷酶(美国专利5,070,012)、氯霉素乙酰转移酶(Gorman et al.,Mol.Cell.Biol.,2:1044-51(1982))、β葡糖醛酸酶、过氧化物酶、β内酰胺酶(美国专利第5,741,657号和第5,955,604号)、催化性抗体、萤光素酶(美国专利第5,221,623号;第5,683,888号;第5,674,713号;第5,650,289号;第5,843,746号)和天然荧光蛋白(Tsien,RY,Annu.Rev.Biochem.,67:509-544(1998))。术语“报告基因”还包括在使用一种或多种能够或期望(或期望不)与所关注的肽相互作用以产生可检测信号的抗体、表位、结合伴侣、底物、修饰酶、受体或配体的基础上能够被特异性检测的任何肽。报告基因还包括可以调节细胞表型的基因。当为这样的检测目的时,报告蛋白不需要与突变AID蛋白融合。其可以通过也编码突变AID蛋白的相同多核苷酸(例如,载体)编码,并且共引入靶细胞和在靶细胞中共表达。

表达载体还可以包括反义、核酶或siRNA多核苷酸以减少靶序列的表达(参见,例如,Sioud M,& Iversen,Curr.Drug Targets,6:647-53(2005);Sandy et al.,Biotechniques,39:215-24(2005))。

本发明还提供了包含编码功能性AID突变体的核酸分子的细胞或者包含编码功能性AID突变体的核酸分子的载体。术语“细胞”、“细胞培养物”、“细胞系”、“重组宿主细胞”、“受体细胞”和“宿主细胞”常可交换使用,并且包括原代主体细胞(primary subject cell)及其任何子代,不考虑传代次数。应当理解不是所有子代与亲代细胞完全相同(由于有意或无意的突变或者环境的差异)。然而,这样改变的子代包括在这些术语中,只要该子代保持与原始转化的细胞相同的功能性。例如,但是不限于,这样的特征可以是产生特定重组蛋白的能力。“增变基因阳性细胞系”是含有足以与其他载体元件联合工作以影响高变的细胞因子的细胞系。该细胞系可以是本领域已知或本文所述的任何细胞系。“克隆”是通过有丝分裂来源于单个细胞或共同祖先的细胞群体。

基于细胞的表达和高变系统包括任何合适的原核或真核表达系统。优选系统是可以容易和可靠生长,具有相当快的生长速率,具有良好表征的表达系统并且可以容易和高效转化或转染的系统。

有用的微生物细胞包括但不限于来自芽孢杆菌属、埃希氏菌属(如大肠杆菌)、假单胞菌属、链霉菌属、沙门氏菌属、欧文氏菌属、枯草芽孢杆菌(Bacillus subtilis)、短芽孢杆菌(Bacillus brevis)的细胞。特别有用的原核细胞包括大肠杆菌的各种菌株(例如,K12、HB101、(ATCC NO.33694)DH5α、DH10、MC1061(ATCC NO.53338)和CC102)。

本领域技术人员已知的许多酵母细胞菌株也可作为宿主细胞用于多肽的表达,包括来自汉逊酵母属、克鲁维酵母属、毕赤酵母属、红冬孢酵母属(Rhino-sporidium)、酵母属和裂殖酵母属以及其他真菌的细胞。优选的酵母细胞包括,例如,酿酒酵母(Saccharomyces cerivisae)和毕赤酵母(Pichiapastoris)。

另外,在需要时,在本发明的方法中可以使用昆虫细胞系统。这样的系统例如Kitts et al.,Biotechniques,14:810-817(1993);Lucklow,Curr.Opin.Biotechnol.,4:564-572(1993);和Lucklow et al.,J.Virol.,67:4566-4579(1993)所述。优选的昆虫细胞包括Sf-9和HI5(Invitrogen,Carlsbad,Calif.)。

包含编码功能性AID突变体的核酸的细胞优选为哺乳动物细胞。本领域也已知许多合适的哺乳动物宿主细胞,并且许多可从美国典型培养物保藏中心(ATCC,Manassas,VA)获得。合适的哺乳动物细胞的实例包括但不限于中国仓鼠卵巢细胞(CHO)(ATCC No.CCL61)CHO DHFR细胞(Urlaub etal.,Proc.Natl.Acad.Sci.USA,97:4216-4220(1980)),人胚肾(HEK)293或293T细胞(ATCC No.CRL1573),和3T3细胞(ATCC No.CCL92)。本领域已知合适的哺乳动物宿主细胞的选择以及用于转化、培养、扩增、筛选及产物产生和纯化的方法。其他合适的哺乳动物细胞系为猴COS-1(ATCC No.CRL1650)和COS-7细胞系(ATCC No.CRL1651),以及CV-1细胞系(ATCCNo.CCL70)。其他示例性哺乳动物宿主细胞包括灵长类细胞系和啮齿类细胞系,包括转化的细胞系。来源于初生组织以及初级外植体的体外培养的正常二倍体细胞、细胞株也是合适的。候选细胞可以为选择基因基因型缺陷,或者可以含有显性作用的选择基因。其他合适的哺乳动物细胞系包括但不限于小鼠成神经细胞瘤N2A细胞,HeLa,小鼠L-929细胞,来源于Swiss、Balb-c或NIH小鼠的3T3系,BHK或HaK仓鼠细胞系,它们可以从ATCC获得。

淋巴或淋巴来源的细胞系也在本发明的范围之内,如前B淋巴细胞来源的细胞系。具体实例不限制地包括RAMOS(CRL-1596)、Daudi(CCL-213)、EB-3(CCL-85)、DT40(CRL-2111)、18-81(Jack et al.,Proc.Natl.Acad.Sci.USA,85:1581-1585(1988))、Raji细胞(CCL-86)及其衍生物。

可以通过“转染”、“转化”或“转导”将本发明的功能性AID突变体引入细胞。如本文所用的“转染”、“转化”、或“转导”指通过利用一种或物理或化学方法将一种或多种外源多核苷酸引入宿主细胞。本领域普通技术人员已知许多转染技术,其包括但不限于磷酸钙DNA共沉淀(参见Methods in Molecular Biology,Vol.7,Gene Transfer and Expression Protocols,Ed.E.J.Murray,Humana Press(1991));DEAE-葡聚糖;电穿孔;阳离子脂质体介导的转染;钨粒促进的微粒轰击(Johnston,S.A.,Nature,346:776-777(1990));和磷酸锶DNA共沉淀(Brash D.E.et al.Molec.Cell.Biol.,7:2031-2034(1987)。在感染性颗粒在可商购的包装细胞中生长之后,可以将噬菌体或反转录病毒载体引入宿主细胞。

本发明还提供了一种用于制备具有期望特性的基因产物的方法,所述方法包括在细胞群体中表达编码所述基因产物的核酸,其中所述细胞群体表达或能够被诱导以表达本发明的功能性AID突变蛋白,由此所述功能性AID突变蛋白的表达在编码所述基因产物的核酸中诱导突变。上文所示与本发明的其他实施方案有关的功能性AID突变体、细胞以及将核酸分子转染入细胞并在其中表达的方法的描述也可以应用于上述方法的相同方面。

期望地,功能性AID突变蛋白通过体细胞高变(SHM)的方式在编码基因产物的核酸中诱导突变。SHM系统中AID的用途在美国专利申请公开09/0075378以及国际专利申请公开WO/08103474和WO 08/103475中详述。如本文所用,术语“所关注的基因产物”或“所关注的蛋白”涉及蛋白或其部分,对其期望为了SHM通过功能性AID突变体优化编码基因产物的核酸,以便快速产生、选择和鉴定该基因产物的改进变体。作为密码子使用的结果可以使这样优化的核酸序列对SHM更敏感(如本文所述),从而在多核苷酸面对功能性AID突变体时诱导氨基酸变化,并且筛选改进的功能。相反地,作为密码子使用的结果可以使这样优化的核酸序列对SHM更耐受(如本文所述),从而在多核苷酸面对功能性AID突变体时减少氨基酸变化,并且筛选改进的功能。

氨基酸或相应核苷酸序列已知或可用(例如,如本文所述可以克隆入载体),并且表型或功能可以改进的任何蛋白是用于本发明方法的候选。合适的蛋白的实例包括,例如,来自任何未修饰或合成来源的表面蛋白、胞内蛋白、膜蛋白和分泌蛋白。所述基因产物优选为抗体重链或其部分、抗体轻链或部分、酶、受体、结构蛋白、辅因子、多肽、肽、胞内抗体、选择标记、毒素、生长因子、肽类激素或者可以被优化的任何其他蛋白。

所述基因产物可以是任何合适的酶,包括与微生物发酵、代谢途径工程、蛋白生产、生物除污以及植物生长和发育有关的酶(参见,例如,Olsenet al.,Methods Mol.Biol.,230:329-349(2003);Turner,Trends Biotechnol.,21(11):474-478(2003);Zhao et al.,Curr.Opin.Biotechnol.,13(2):104-110(2002);和Mastrobattista et al.,Chem.Biol.,12(12):1291-300(2005))。

用于本发明方法的合适的受体包括但不限于诸如抗体的结合细胞的受体(B细胞受体)、T细胞受体、Fc受体、G偶联蛋白受体、细胞因子受体、糖受体和基于AvimerTM的受体。可以通过SHM改变这样的受体以改进一种或多种以下性状:亲和力、亲和性、选择性、热稳定性、蛋白水解稳定性、溶解度、二聚化、折叠、免疫毒性、偶联至信号转导级联系统和表达。

用于本发明方法的合适的基因产物还包括能够调节其他生物活性蛋白的药物代谢动力学和/或药物动力学的分子,例如,脂质和聚合物,如聚胺、聚酰胺、聚乙二醇和其他聚醚。用于本发明方法的合适的基因产物的其他实例包括多肽,如VEGF、VEGF受体、白喉毒素亚基A、百日咳杆菌(B.pertussis)毒素、CC趋化因子(例如,CCL1-CCL28)、CXC趋化因子(例如,CXCL1-CXCL16)、C趋化因子(例如,XCL1和XCL2)和CX3C趋化因子(例如,CX3CL1)、IFN-γ、IFN-α、IFN-β、TNF-α、TNF-β、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-10、IL-12、IL-13、IL-15、TGF-β、TGF-α、GM-CSF、G-CSF、M-CSF、TPO、EPO、人生长因子、成纤维细胞生长因子、核辅因子、Jak和Stat家族成员、诸如趋化因子受体的G蛋白信号分子、JNK、Fos-Jun、NF-κB、I-κB、CD40、CD4、CD8、B7、CD28和CTLA-4。用于选择所关注的基因产物(例如,蛋白)作为通过SHM的突变和优化的合适候选的方法以及相关筛选测定在美国专利申请公开09/0075378以及国际专利申请公开WO/08103474和WO 08/103475中进一步公开。

在本发明的一优选实施方案中,通过功能性AID突变蛋白进行突变的核酸序列编码抗体或其部分。编码所有天然存在的种系、亲和力成熟、合成或半合成的抗体以及其片段的核酸序列可以用于本发明。总的来说,可以通过SHM改变这样的抗体编码序列以改进一种或多种以下功能性状:亲和性、亲和力、选择性、热稳定性、蛋白水解稳定性、溶解度、折叠、免疫毒性和表达。根据抗体形式,可以产生包含分离的重链和轻链文库的文库,所述重链和轻链文库可以在宿主细胞中共表达。在某些实施方案中,全长抗体可以被分泌(或释放),和/或在宿主细胞的质膜表面展示。在其他实施方案中,可以将重链和轻链文库插入相同表达载体或不同表达载体以使两条抗体链能够同时共进化。

因此,本发明方法提供了绕过需要体内免疫来选择结合至关键表面表位的抗体的能力,其与产生对靶蛋白功能最稳健的生物学影响一致。此外,哺乳动物抗体本质上具有靶向SHM的最优密码子使用模式,这大大简化了模板设计方法。对于某些抗原,体内免疫导致不影响靶功能的表位选择,从而阻碍选择有力和有效的抗体候选。在其他实施方案中,本发明方法可以通过决定靶蛋白功能的表位的作用的性质提供具有有效活性的位点定向抗体的快速进化。这提供了扫描靶蛋白的最佳表位位置和产生用于临床的同类中最佳的抗体药物的能力。

本发明方法可以用于增加抗体或其片段(例如,F(ab′)2、Fab′、Fab、Fv、scFv、dsFv、dAb或单链结合多肽)的特定亚结构域中的热点密度,这可以导致特征的改进(例如,增加的结合亲和力、增加的结合亲和性和/或减少的非特异性结合)。本发明方法还可以用于产生在恒定结构域(例如,Fc)中具有增加的热点的合成抗体,这可以导致对Fc受体(FcR)的结合亲和力增加,从而调节信号级联。利用本文所述的方法可以同时修饰重链和轻链或者其部分。

可以利用本发明方法修饰胞内抗体以改善或促进重链和/或轻链在胞浆的还原环境中的折叠。可选地或另外,可以修饰sFv胞内抗体以稳定可以在没有域内二硫键的情况下正确折叠的框架。还可以修饰胞内抗体以增加例如一种或多种以下特征:结合亲和力、结合亲和性、表位可接近性、与内源蛋白竞争靶表位、半衰期、靶螯合、靶蛋白的翻译后修饰等。因为胞内抗体在细胞内发挥作用,所以其活性与用于酶活性测定的测定方法更类似。

本领域已知用于设计和创建抗体文库的方法,以及用于鉴定提供具有优良选择性的抗体的选择、跨物种反应性和阻断活性的最优表位的方法(参见,例如,美国专利申请公开09/0075378以及国际专利申请公开WO08/103474和WO 08/103475)。检测和选择具有改进性状的表面暴露或分泌抗体的特异性筛选为本领域众所周知。这样的筛选可以包括几轮选择,所述选择基于诸如亲和力、亲和性、选择性和热稳定性的多个参数的同时选择,以便进化整体最佳的抗体。

应当理解有各种其他组成核苷酸序列,如编码序列和遗传元件,本领域普通技术人员会优选功能性突变AID蛋白不突变以保持整个系统完整性。这些组成核苷酸序列如本文所述,并且包括但不限于(i)选择标记,(ii)报告基因,(iii)基因调控信号,(iv)用于高水平增强的SHM或者其调控或测量的酶或辅助因子(例如,AID或功能性AID突变体、pol eta、转录因子和MSH2,(v)信号转导组分(例如,激酶、受体、转录因子),和(vi)蛋白的结构域或亚结构域(例如,核定位信号、跨膜结构域、催化结构域、蛋白-蛋白相互作用结构域以及其他蛋白家族保守基序、结构域和亚结构域)。

根据所关注的基因产物的性质,和可获得的关于所关注的基因产物的信息量,本领域普通技术人员可以在实施本发明方法之前或与之联合进行以下策略的任何组合以制备具有期望特性的所关注的基因产物。

1.无SHM优化:虽然可以期望增加在编码所关注的基因产物的核酸序列内的热点数,但是应当注意到预期任何未修饰的核酸序列进行一定量的SHM,并且可以用于本发明方法,而不需要优化或实际序列的任何具体知识。而且,某些蛋白(例如,抗体)天然包含进化出合适的密码子使用的核酸序列,并且不需要密码子修饰。可选地,可以期望增加在编码所关注的基因产物的核酸序列(例如,抗体或其片段的框架区)内的冷点数。

2.整体SHM热点优化:在一些方面,可以增加编码基因产物的核酸序列中的热点数,如美国专利申请公开09/0075378和国际专利申请公开WO 08/103475所详述。这种方法可以应用于所述核酸序列的整个编码区,从而使整个核酸序列对SHM更敏感。如果关于基因产物或者相关同种型之间的结构活性关系知道的相对较少,可以优选这种方法。

3.选择性SHM热点修饰:可选地,可以如美国专利申请公开09/0075378和国际专利申请公开WO 08/103475所述,通过用合成的可变区靶向代替所关注的区域来选择性和/或系统性修饰编码所关注的蛋白的核酸序列,这提供高密度的热点并且通过在特定基因座的SHM种下最大多样性。

基于上文所述,本领域普通技术人员会理解任何或全部上述方法可以与本发明方法联合进行。然而,用于整体SHM热点优化和选择性SHM热点修饰的方法可能导致蛋白功能更快和更高效优化。

设计编码所关注的基因产物的SHM优化的核酸序列之后,可以利用标准方法合成并测序以证实正确合成。一旦证实所述核酸序列的序列,可以将所述核酸序列插入如本文所述的载体,然后可以将该载体引入如本文所述的宿主细胞。可以将增强子(例如,Ig增强子)插入载体以增加表达,和/或将功能性AID突变蛋白启动的SHM靶向编码所关注的基因产物的核酸序列。

按照本发明方法,可以将本文所述的任何载体与含有编码如本文所述的功能性AID突变体的核酸序列的不同载体共转染入宿主细胞。在一方面,可以将本文所述载体转染入含有(和表达)内源性AID蛋白的宿主细胞。在另一方面,可以将本文所述载体与含有功能性AID突变体的核酸序列的不同载体共转染入含有内源性AID蛋白的宿主细胞,从而功能性AID突变体在细胞中过量表达。在另一方面,可以修饰本文所述载体以包含编码功能性AID突变体的核酸序列,用于转染入含有或不含有内源性AID蛋白的宿主细胞。在一优选实施方案中,功能性AID突变体是由SHM耐受的核酸序列编码的合成AID。

将一种或多种核酸引入表达载体之后,可以将所述载体扩增,纯化,利用标准转染技术引入宿主细胞和利用标准分子生物学技术表征。可以利用标准转染/转化技术将纯化的质粒DNA引入宿主细胞,并且使所得的转化子/转染子在含有抗生素、选择剂和/或激活/反式激活蛋白信号(例如,诱导剂,如多西环素)的适当培养基中生长以诱导编码所关注的基因产物的核酸序列的表达。

本发明方法还可以包括将以下一种或多种核酸序列引入细胞或细胞群体:(i)至少一种核酸序列,其全部或部分从相应的野生型核酸序列改变为正面影响该核酸序列所经历的SHM率,或者在任何修饰之前天然具有高百分比热点的核酸序列,和/或(ii)全部或部分改变为负面影响SHM率的核酸序列。

在一方面,本发明方法还可以包括将一种或多种核酸序列引入细胞或细胞群体,所述核酸序列从相应的野生型核酸序列改变为负面影响SHM率。所述核酸序列可以编码,例如,一种或多种用于SHM的因子(例如AID、Pol eta、UDG)、一种或多种选择标记基因或者一种或多种报告基因。

在另一方面,本发明方法还可以包括将一种或多种核酸序列引入细胞或细胞群体,所述核酸序列全部或部分从相应的野生型核酸序列改变为正面影响SHM率。所述核酸序列可以编码,例如,所关注的酶、受体、转录因子、结构蛋白、毒素、辅因子或特异性结合蛋白。

在另一方面,本发明方法还可以包括将本质上具有高SHM率的核酸序列引入细胞或细胞群体,例如,编码免疫球蛋白重链或免疫球蛋白轻链的核酸序列,或者抗体基因的高变区。

本发明方法的细胞或细胞群体还可以包含一种或多种以下额外的元件:(i)诱导系统,以调控AID、AID同系物或本发明的功能性AID突变体的表达,(ii)一种或多种Ig增强子,(iii)一种或多种E框,(iv)一种或多种SHM的辅助因子,(v)一种或多种用于稳定游离型表达的因子,如EBNA1、EBP2或ori-P,(vi)一种或多种选择标记基因,(vii)一种或多种含有AID、AID同系物或本发明的功能性AID突变体的基因的第二载体,或者(viii)它们的组合。

在本发明的另一方面,所述方法包括表达两个核酸序列,每个核酸序列编码一种所关注的基因产物,其中两个核酸序列均靠近启动子,并且在相同细胞中同时表达和共进化。所述启动子可以是双向启动子,如双向CMV启动子。在另一实施方案中,将所关注的两个核酸序列置于两个单向启动子之前。所述两个启动子可以是相同启动子或不同启动子。所关注的两个核酸序列可以在相同载体中或在不同载体上。

所述细胞或细胞群体组成型表达或能够被诱导以表达如本文所述的功能性突变AID蛋白。功能性突变AID蛋白的表达在编码所述基因产物的核酸序列中诱导突变。所述细胞或细胞群体还可以表达增强AID介导的所述核酸序列突变的其他因子。作为本发明方法的结果,实现了编码所关注的基因产物的核酸序列的持续序列多样化。经过一段适当的时间之后(例如,2-10次细胞分裂),可以筛选包含所关注的基因产物的变体的所得宿主细胞,鉴定改进的突变体并从所述细胞群体分离。可以如本文所述使细胞迭代生长、测定和选择,以选择性富集表现出期望特性的表达编码所关注的基因产物的核酸序列的细胞。合适的测定和富集方法(例如,荧光激活细胞分选术(FACS)、亲和分离、酶活性、毒性、受体结合、生长刺激等)为本领域已知,并且如美国专利申请公开09/0075378以及国际专利申请公开WO08/103475和WO 08/103474所述。

在本发明的一实施方案中,可以改造编码所关注的基因产物的核酸序列,从而将所关注的基因产物展示在细胞表面。在这个方面,可以通过创造将所关注的蛋白符合读框地偶联至合适的跨膜结构域的嵌合分子来创造细胞表面展示的蛋白。在哺乳动物细胞表达的情况下,例如,可以使用MHC1型跨膜结构域,如来自H2kk(包括周跨膜结构域(peri-transmembranedomain)、跨膜结构域和胞浆结构域;NCBI基因登录号AK153419)的跨膜结构域。同样地,本领域很好地建立了原核细胞(如大肠杆菌和葡萄球菌)、昆虫细胞和酵母中蛋白的表面表达(参见,例如,Winter et al.,Annu.Rev.Immunol.,12:433-55(1994);Plückthun A.Bio/Technology,9:545-551(1991);Gunneriusson et al.,J.Bacteriol.,78:1341-1346(1996);Ghiasi et al.,Virology,185:187-194(1991);Boder and Wittrup,Nat.Biotechnol.,15:553-557(1997);和Mazor et al.,Nat.Biotechnol.,25(5):563-565(2007))。

可以通过分泌然后结合(或缔合)细胞表面上的分泌蛋白来产生表面展示的抗体或蛋白。抗体或蛋白缀合至细胞膜可以在蛋白合成期间或蛋白从细胞分泌之后发生。缀合可以通过共价键、结合相互作用(例如,特异性结合成员所介导的)或者共价和非共价键的组合发生。还可以通过创造抗体或结合蛋白融合蛋白来将蛋白偶联至细胞,所述融合蛋白包含特异性结合至所关注的靶标的第一特异性结合成员,该第一特异性结合成员融合至特异性展示在细胞表面的第二结合成员(例如,在利用A蛋白和Fc结构域的结合的情况下:A蛋白在细胞表面表达并附着至细胞表面,并且结合和定位分泌抗体(或作为Fc融合蛋白表达的所关注的蛋白))。

在有些情况下可以期望将表面展示的蛋白转换为从细胞释放或脱落的蛋白用于进一步表征。可以通过使用特异性接头来完成转换,所述接头可以通过与选择性蛋白酶孵育来切割,如X因子、凝血酶或任何其他选择性蛋白水解剂。还可以包括使得能够在载体中遗传操作所编码的蛋白(即,允许从蛋白阅读框切除表面附着信号)的核酸序列。这样的遗传操作可以利用重组系统完成。如本文所用,“重组系统”指为了并入所关注的基因而允许载体和染色体之间重组的系统。重组系统为本领域已知,并且包括,例如,Cre/Lox系统和FLP-IN系统(参见,例如,Abremski et al.,Cell,32:1301-1311(1983),和美国专利4,959,317号、5,654,182号和5,677,177号)。例如,插入一个或多个单一限制位点,或cre/lox元件,或其他重组元件,使得能够按需要选择性去除附着信号并随后在细胞内积累(或分泌)所关注的蛋白。其他实例包括在附着信号(如跨膜结构域)周围插入侧翼loxP位点,以允许所关注的蛋白的高效细胞表面表达。然而,当在细胞中表达cre重组酶时,LoxP位点之间发生重组,导致附着信号的丢失,并且因此导致所关注的蛋白的释放或脱落。

可以利用各种标准生理、药理和生化方法筛选通过本发明方法所产生的基因产物的期望特性(例如,可选择或改进的表型)。这样的测定包括例如,生化测定,如结合测定、荧光偏振测定、溶解度测定、折叠测定、热稳定性测定、蛋白水解稳定性测定和酶活性测定(一般参见Glickman et al.,J.Biomolecular Screening,7(1):3-10(2002);Salazar et al.,Methods.Mol.Biol.,230:85-97(2003)),以及一系列基于细胞的测定,包括基于信号转导、游动性、全细胞结合、流式细胞术和荧光激活细胞分选术(FACS)的测定。当所述基因产物为抗体或其片段时,可以利用本领域公知的测定(例如,酶联免疫吸附测定(ELISA)、酶联免疫吸附斑点(ELISPOT测定)、突变IgH链的凝胶检测和荧光检测、斯卡查德分析、BIACOR分析、蛋白印迹、聚丙烯酰胺凝胶(PAGE)分析、放射免疫测定等,其可以测定结合亲和力、结合亲和性等)进一步分析所述抗体或其片段的表型/功能。

可以通过任何本领域公知的测定来富集表达如本文所述的合成或半合成文库编码的所关注的蛋白的细胞,所述测定包括但不限于将肽偶联至微粒的方法。

许多FACS和高通量筛选系统是可商购的(参见,例如,Zymark Corp.,Hopkinton,Mass.;Air Technical Industries,Mentor,Ohio;BeckmanInstruments Inc.,Fullerton,Calif.;Precision Systems,Inc.,Natick,Mass.),使得这些测定能够以高通量模式运行。这些系统典型地自动化整个过程,包括所有样品和试剂移液,液体分配定时孵育和在适合所述测定的检测器中的微量培养板的最终读数。这些可配置的系统提供高通量和快速的启动以及高度的灵活性和定制性。这样的系统的制造商提供各种高通量系统的详细方案。因此,例如,Zymark Corp.提供描述用于检测基因转录、配体结合等的调节的筛选系统的技术公告。可以在本发明方法的上下文使用的示例性筛选测定如美国专利申请公开09/0075378以及国际专利申请公开WO08/103475和WO 08/103474所述。

一旦获得所关注的细胞群体,就可以获得(rescue)所关注的核酸序列,并且测序和鉴定相应的突变。例如,可以通过SV40T抗原的共表达扩增总mRNA或染色体外质粒DNA(J.Virol.,62(10):3738-3746(1988)),和/或从细胞提取总mRNA或染色体外质粒DNA并用作聚合酶链反应(PCR)或反转录(RT)-PCR的模板以利用适当的引物克隆修饰的核酸序列。可以将突变核酸序列亚克隆入载体并在大肠杆菌中表达。可以将标签(例如,His-6标签)加至羧基端以利用层析促进蛋白纯化。所得的数据可以用于填充数据库,连接特定氨基酸取代与一种或多种期望特性的变化。然后这样的数据库可以用于重组有利突变或者在新鉴定的所关注的区域中设计具有靶向多样性的下一代多核苷酸文库,例如编码蛋白的功能性部分的核酸序列。

当所关注的基因产物为抗体或其片段时,可以利用可变重链(VH)前导区和/或可变轻链(VL)前导区特异性有义引物和同种型特异性反义引物通过PCR提取DNA。可选地,可以从选择分选的细胞群体分离总RNA,并且利用可变重链(VH)前导区和/或可变轻链(VL)前导区特异性有义引物和同种型特异性反义引物使其进行RT-PCR。可以利用标准方法将克隆测序,并且可以分析所得序列的核苷酸插入和缺失频率、受体修正(revision)和V基因选择。

然后可以使细胞重新生长,重新诱导SHM和重新筛选,经过若干循环以引起期望功能的迭代改进。在任何点,可以获得编码所关注的基因产物的核酸序列和/或进行测序以监测正在进行的诱变。

本发明还提供了一种用于将生物体突变以具有期望表型的方法,所述方法包括在所述生物体中表达或诱导表达功能性AID突变蛋白,由此所述功能性突变AID蛋白的表达在所述生物体的染色体DNA内诱导突变。所述生物体期望为原核生物(例如,细菌)或真核生物。所述真核生物可以为无脊椎动物或脊椎动物,但是优选为脊椎动物。更优选地,所述生物体为哺乳动物。最优选地,所述生物体为小鼠。

包含编码功能性突变AID蛋白的核酸序列的本文所述的载体可以用于上述将生物体突变的方法。实际上,这样的载体可以用于利用本领域已知的常规方法产生功能性突变AID蛋白的转基因小鼠(参见,例如,MethodsMol.Med.,99:255-67(2004))。在一实施方案中,包含编码功能性突变AID蛋白的核酸的载体可以用于产生转基因小鼠,其中内源性AID基因未被破坏。在另一实施方案中,包含编码功能性突变AID蛋白的核酸的载体可以用于产生转基因小鼠,其中将编码功能性AID突变体的核酸序列插入内源(即,染色体)AID基因座以产生“敲入”小鼠,从而阻止内源性AID的表达。在某些实施方案中,转基因小鼠包含功能性突变AID蛋白,其表达可以通过例如组织特异性启动子或其他诱导型启动子来调控(例如,多西环素或四环素(参见,例如,Curr.Opin.Biotechnol.,13(5):448-52(2002))。在另一实施方案中,所述生物体包含至少一种为SHM而被密码子优化的核酸序列以增加上文所述方法的SHM基序的数量。

无论什么方法用于产生转基因小鼠,功能性突变AID蛋白的表达在小鼠的染色体DNA内诱导突变。一旦按照本发明方法在生物体中发生诱变,则优选利用本领域已知和本文所述的方法选择和/或筛选所述生物体内的一个细胞或多个细胞的期望表型。

本文所述的发明方法还可以用于产生转基因动物,其产生针对所关注的抗原或其表位的抗体。在一方面,本发明方法优选用于产生转基因小鼠,其产生单克隆抗体。用于产生单克隆抗体的方法为本领域已知,并且例如,参见and Milstein,Eur.J.Immunol.,5:511-519(1976),Harlow andLane(eds.),Antibodies:A Laboratory Manual,CSH Press(1988),和C.A.Janeway et al.(eds.),Immunobiology,5th Ed.,Garland Publishing,New York,NY(2001))所述。

期望抗体可以是如本文所述的任何天然或合成来源的抗体,或者其任何抗原结合片段。此外,所述抗体可以是非人抗体、人源化抗体或全人抗体。优选地,所述抗体为人源化抗体。非人(例如,小鼠)抗体的“人源化”形式是嵌合抗体,其含有来源于非人免疫球蛋白的最小序列。对于大部分,人源化抗体为人免疫球蛋白(受体抗体),其中所述受体的高变区残基被来自诸如小鼠、大鼠、兔或非人灵长类的非人物种(供体抗体)的具有期望特异性、亲和力和能力的高变区残基所代替。在某些情况下,人免疫球蛋白的框架区(FR)残基被相应的非人残基代替。此外,人源化抗体可以包含在受体抗体或供体抗体中未发现的残基。进行这些修饰以进一步完善抗体性能。人源化抗体基本上可以包含所有的至少一个和在某些情况下两个可变结构域,其中所有或基本上所有高变区对应非人免疫球蛋白的高变区,并且所有或基本上所有FR为人免疫球蛋白序列的FR。所述人源化抗体还会任选包含至少部分免疫球蛋白恒定区(Fc),典型为人免疫球蛋白恒定区。为了了解详情,参见Jones et al.,Nature,321:522-525(1986),Reichmann et al.,Nature,332:323-329(1988),和Presta,Curr.Op.Struct.Biol.,2:593-596(1992)。在另一实施方案中,可以通过将小鼠CDR移植入人抗体框架来人源化单克隆抗体而基本上不干扰所述抗体结合抗原的能力。制备人源化抗体的方法一般为本领域众所周知,并且可以容易地应用于本文所述方法所产生的抗体。

在本发明的一优选实施方案中,利用包含用小鼠转基因株培育的功能性AID突变蛋白的转基因小鼠产生人源化或全人抗体,所述小鼠转基因中的内源小鼠抗体基因表达被抑制并且被人抗体基因表达有效代替。其中内源抗体基因被人抗体基因有效代替的转基因小鼠的实例包括但不限于HuMAb-MouseKirin TC MouseTM和KM-Mouse(参见,例如,LonbergN.Nat.Biotechnol.,23(9):1117-25(2005)和Lonberg N.Handb.Exp.Pharmacol.,181:69-97(2008))。

实施例

以下实施例进一步说明本发明,但是不应当理解为以任何方式限制其范围。

实施例1

本实施例说明了利用乳突形成测定筛选DNA的活性增变基因的方法。

乳突形成测定已用于筛选在DNA修复的某些方面缺陷的大肠杆菌突变体(Nghiem et al.,Proc.Natl.Acad.Sci.USA,85:2709-17(1988)和Ruiz etal.,J.Bacteriol.,175:4985-89(1993))。

对于乳突形成测定,将质粒pTrc9944中的AID/APOBEC cDNA转化入携带F’lacI-Z-proAB+附加体的大肠杆菌K12菌株CC102 araΔ(lacproB)XIII,其中lacZ基因在密码子461处携带GAG->GGG错义突变(Cupples et al.,Proc.Natl.Acad.Sci.USA,86:5345-49(1989)),并且平板接种在补充了氨苄青霉素(100μg/ml)和异丙基β-D-1-硫代半乳糖苷(IPTG;1mM)的MacConkey-乳糖琼脂(BD Biosciences)上。将平板在37℃下孵育4天,乳突在3天后可见。

通过将在补充了氨苄青霉素(100μg/ml)和IPTG(1mM)的LB培养基中生长过夜至饱和的培养物平板接种在M9+0.2%乳糖琼脂上来测定CC102[pTrc99-AID/APOBEC]转化子回复突变为Lac+的频率。通过用从12个独立培养物测定的每个中位数确定平板接种的每107个活细胞选择存活的菌落形成细胞的中位数来测量突变频率。通过将PCR扩增的lacZ的相关部分测序来确定突变的性质(5’-AGAATTCCTGAAGTTCAGATGT(SEQ ID NO:79)和5’-GGAATTCGAAACCGCCAAGAC(SEQ ID NO:80))。

在lacZ内带有错义突变的大肠杆菌细胞在MacConkey-乳糖平板上产生白色菌落:在这样的白色菌落内,经常可以看到少量红色小菌落(乳突,典型每个菌落0-2个),这反映自发产生的Lac+回复突变体。可以凭借乳突数目的增加来鉴定表现出自发突变频率升高的细菌增变克隆。

大肠杆菌菌株CC102在lacZ的密码子461中携带错义突变,由于A:T至G:C的转换突变谷氨酸被甘氨酸取代(Cupples et al.,Proc.Natl.Acad.Sci.USA,86:5345-49(1989))。如果CC102中AID的表达增加在密码子461处的胞嘧啶脱氨基作用的速率,可以预期这增加Lac+回复突变体的频率。CC 102的AID表达转化子在MacConkey-乳糖平板上给出增加的乳突形成频率(图1a,b)。培养6天之后测定的每个菌落的乳突数目从0-2个每个菌落增加至8-10个,这与在最小乳糖平板上所判断的过夜培养物中Lac+回复突变体的频率增加3倍以上相关。6个这样的Lac+回复突变体的序列分析证实它们的确通过在密码子461处的回复突变而出现。当AID相关脱氨酶APOBEC1(A1)和APOBEC3G(A3G)在CC102细胞中表达时也触发乳突形成增加(图1b)。

这个测定还可以用于确定是否可以从总脾cDNA文库分离活性增变基因。将人脾cDNA文库引入CC102细胞,并且为了增强的乳突形成筛选50,000个菌落。鉴定了36个可能的候选,通过在MacConkey乳糖平板上划线来重新测试。证实仅2个菌落给出乳突形成增加。序列分析显示它们携带来源于APOBEC3G的不同cDNA。图1c示出了野生型全长APOBEC3GmRNA和人脾cDNA文库筛选中获得的两个APOBEC3G cDNA,其中相对于开放阅读框的开始(+1)来编号核苷酸残基。

本实施例证实大肠杆菌乳突形成测定可以用作活性增变基因的高通量筛选。

实施例2

本实施例说明了鉴定AID突变体的测定。

通过利用Taq聚合酶(2.5U;Bioline)在1ng模板DNA上易错PCR产生第一代和第二代人AID突变文库,使用Taq缓冲液中的1μM正向和反向引物(5’-ATGGAATTCATGGACAGCCTCTTG(SEQ ID NO:81);5’-CTGAAGCTTTCAAAGTCCCAAAGTA(SEQ ID NO:82))、250μM-dNTP、10mM-MgCl2,94℃(2min),然后30个94℃(30s)、65℃(30s)和72℃(1min)的循环。利用Genemorph II随机诱变试剂盒(Stratagene)根据制造商的说明在0.1ng DNA模板上产生第三代人AID突变文库。

如实施例1所述进行乳突形成测定,除了将平板在37℃下孵育3-6天,乳突在3天之后变得可见并且其数目增加直至第7天。对于阿拉伯糖-诱导型表达的分析,在质粒pBAD30中表达AID(Guzman et al.,J.Bacteriol,177:4121-30(1995))。

如实施例1所述测定CC102[pTrc99-AID]转化子回复突变为Lac+的频率,然而在转化入大肠杆菌菌株KL 16(Hfr(PO-45)relA1 spoT1 thi-1)以及在利福平(50μg/ml)和阿拉伯糖(0%-0.5%)的存在下菌落生长之后评价突变为利福平抗性(Rifr)的突变。如实施例1所述测量突变频率,通过如实施例1所述的PCR扩增的lacZ的相关部分或者PCR扩增的rpoB的相关部分(5′-TTGGCGAAATGGCGGAAAACC-3′(SEQ ID NO:83)和5′-CACCGACGGATACCACCTGCTG-3′(SEQ ID NO:84))的测序来确定突变的性质。

图1d和图2所示的结果证实这种测定可以鉴定AID上升突变体(upmutant)。来自4个独立PCR-诱变实验的总计60,000个菌落产生了13个在MacConkey-乳糖平板上表现出乳突形成增加的克隆。然后在重新转染的大肠杆菌菌株KL16中测试这些突变体中的9个产生利福平抗性菌落的频率,并且所有9个均表现出在rpoB基因座的突变频率增加。

然后使来自第一代上升突变体中的两个的AID cDNA,即Mut1和Mut7本身进行PCR诱变,并且获得了表现出乳突形成增加的第二代突变体(图2)。这些第二代突变体所表现的高乳突形成使得难以视觉上辨别乳突形成的任何额外增加。为了在第三轮突变/选择中筛选增变活性的进一步增强,将编码AID Mut1.1和Mut7.3的cDNA克隆入阿拉伯糖诱导表达载体,从而可以通过改变培养基中的阿拉伯糖浓度来调控CC102转化子中获得的乳突数目(图1e)。通过在低(0.02%)阿拉伯糖下筛选乳突形成获得了第三代AID上升突变体,如通过突变为利福平抗性的频率所判断的,其中一些给出比野生型AID高几乎400倍的突变频率(图2)。

图2示出了通过乳突形成筛选所选择的AID上升突变体的代(dynasty)。在三轮连续诱变中获得的上升突变体与从单个PCR-诱变实验中获得的突变体分组为兄弟姐妹家族。示出了每轮诱变中引入的额外的氨基酸取代,所示取代下面的数字给出了相对于载体突变为Rifr的平均频率。*表示在所示密码子处引入提前终止密码子所引起的C端截短。根据其代来源编号单个突变体:因此,例如,Mut7(K10E/E156G)是Mut7.1(K10E/E156G/F115Y)的亲本。

正如当在诱导条件下生长时的更小菌落大小所判断的,几个第三代突变体看起来在大肠杆菌中表现出毒性;这伴随着在生长至饱和的细菌培养物中活细胞计数减少。这个结果在图1f中证实,其示出了相对于从在没有诱导的情况下生长的培养物所获得的滴度,在IPTG诱导条件下在LB/Amp中生长至饱和的表达不同AID上升突变体的CC102转化子的细菌滴度。这种毒性可以导致一些高乳突形成突变体给出异常低的突变为Rifr的频率(例如,Mut7.3.4;图2),并且在过夜培养期间AID表达可能下调。

本实施例证实大肠杆菌乳突形成测定可以鉴定表现出与野生型AID蛋白相比活性提高至少10倍的功能性AID突变蛋白。

实施例3

本实施例证实细菌乳突形成测定可以鉴定具有增加的活性的AID突变体的热点。

图3a比较了含有赋予增加的活性的特定突变的人AID(SEQ ID NO:2)的一级序列与河豚(河豚)AID序列中的上升突变。推断在加上星号的残基处的突变赋予增加的增变活性,因为它们构成了在rpoB的突变频率中表现出>2倍差异的至少一对AID序列之间的唯一差别。双下划线的残基表示在多个独立上升突变体中鉴定取代但是存在一个或多个其他取代的位点。在加上星号或双下划线的残基之上或之下的方框示出了取代突变的性质和在全部9个独立文库中检测到的每个取代的频率。如通过残基是在河豚上升突变体中鉴定的唯一突变或在多个河豚上升突变体中鉴定了取代(尽管与其他取代一起)的事实所判断的,在河豚AID中的相应位置看起来也是所选上升突变位点的残基通过粗体、单下划线来识别。锌配位基序(HVE和PCYDC(SEQ ID NO:86))和提示的多核苷酸接触的区域(FCEDRKA(SEQID NO:87)(Cupples et al.,Proc.Natl.Acad.Sci.USA,86:5345-49(1989);Conticello et al.,Nat.Struct.Mol.Biol.,14:7-9(2007);和Chen et al.,Nature,452:116-119(2008))通过方框来突出表示。

除了在AID上升突变体中的3个(Mut5、Mut1.3和Mut1.5)中鉴定的提前终止密码子突变,各种AID上升突变体的序列分析揭示了对某些氨基酸取代的显著偏好。例如,在独立实验中选择了K34E、T82I和E156G取代(每个本身足以增加AID活性)。在来自PCR产生的文库的48个随机(即,未选择)克隆的序列中未发现这些突变,其中观察到广谱的突变,未显示诱变过程本身的任何主要热点。因此,少量氨基酸取代的重复鉴定提示在AID中存在有限数量的单个氨基酸取代,其产生增加的乳突形成。

虽然在某些情况下(特别在第三代中)在单轮中引入的突变的多重性阻止明确鉴定负责乳突形成增加的那些突变,但是在许多情况下可以确定地鉴定相关上升突变,因为其构成一对不同乳突形成的AID序列之间的唯一差别,或者(稍微较少确定)因为其在多个PCR中独立获得。这样的上升突变的位置如图3a所示,其中可见一些位于锌配位基序周围在可能的催化部位附近(V57A;T82I),而其他在相当于先前已提示涉及多核苷酸结合的部分APOBEC3的区域中(F115Y;K120R)(Conticello et al.,Nat.Struct.Mol.Biol.,14:7-9(2007);Chen et al.,Nature,452:116-119(2008);和Holden et al.,Nature,456:121-124(2008)),几个则聚集在功能未知的区域中。

本实施例说明了用于鉴定具有增加的活性的AID突变体的方法。

实施例4

本实施例证实在细菌乳突形成筛选中鉴定的上升突变增加AID的特异性活性。

从大肠杆菌菌株Rosetta(DE3)pLysS的pOPTG-AID转化子纯化GST-AID融合蛋白(pOPTG载体,O.Perisic,Cambridge,UK赠送)。使细胞在37℃下在含有100μg/ml氨苄青霉素和100nM ZnCl2的2XTY中生长直至培养物达到600nm的吸光度为0.8,这时用1mM IPTG在18℃下诱导16h,然后通过在裂解缓冲液(20mM-Tris pH 7.4、100mM-NaCl、0.1%Triton X-100、5mM-DTT、4μg/ml RNase A和完全无EDTA蛋白酶抑制剂鸡尾酒(Roche))中在冰上孵育30min然后超声来裂解沉淀的细胞。通过离心(95,000g;1h)来澄清细胞裂解物,并且通过在4℃下吸附至谷胱甘肽-琼脂糖(Amersham Pharmacia)5h和用补充了50mM还原型谷胱甘肽且不含Triton X100的裂解缓冲液广泛洗涤之后洗脱来从这些裂解物纯化GST-AID。洗脱的样品在4℃下储存达一周。

通过蛋白印迹监测GST-AID融合蛋白的丰度(图3b)。如通过蛋白印迹分析所判断的,大量上升突变体的超声提取物的初始筛选未显示表现出可溶性蛋白的部分产量显著增加的任何上升突变体。

在37℃下在10μl反应缓冲液(8mM-Tris、pH 8.0、8mM-KCl、10mM-NaCl、2.5mM EDTA、0.2mM-二硫苏糖醇、5μg RNase A和0.4单位尿嘧啶-DNA糖基化酶(NEB))中用0.5pmol寡脱氧核糖核苷酸(荧光素-5′-ATATGAATAGAATAGAGGGGTGAGCTGGGGTGAGCTGGGGTGAG-3′-生物素(SEQ ID NO:85))测定半纯化的GST-AID(100-400ng)的脱氨酶活性。通过加入等体积的加样染料(甲酰胺、0.5mM EDTA)和在98℃下加热3分钟来在指定时间终止反应。使所得的切割的寡核苷酸在10%PAGE-尿素凝胶中电泳,并且用Typhoon Phosphoimager(Molecular Dynamics)检测荧光。从扫描图像确定脱氨基作用的程度,将切割产物条带的像素量(减去背景之后)表达为产物和残余底物条带合并的像素量的百分率。

当从人上升突变体Mut1.1和Mut7.3.6产生GST-融合蛋白时,如通过在寡核苷酸底物上进行的体外脱氨基作用测定所判断的,特异性活性的明显增加是显著的(图3b,c)。根据初始速率的分析,这些上升突变体的特异性脱氨基活性与野生型相比增加了约5倍。

rpoB内的11个C:G对中的任一个的转换突变可以导致Rifr。对于AID上升突变体Mut8、1.1、1.2、7.3.5和7.3.6,这样的突变在Rifr菌落中的分布如图3d所示。增加的比活看起来未伴随靶特异性的任何总变化,因为利用几个人AID突变体获得的rpoB突变的分析未揭示突变谱中的任何主要差异(图3d)。

本实施例证实在细菌乳突形成筛选中鉴定的突变增加AID的特异性活性。

实施例5

本实施例描述了河豚(河豚)AID中导致AID活性增加的突变的产生。

利用Genemorph II随机诱变试剂盒(Stratagene),根据制造商的说明,在0.1ng DNA模板上产生含有河豚AID突变体的文库。如实施例1所述进行河豚突变体文库的细菌乳突形成筛选。对于所示用编码野生型或突变河豚AID的质粒转化的大肠杆菌K16,在18℃或37℃下相对于仅有载体的转化子的突变为Rifr的频率如图4b所示。构建了Mut4.3和4.10的衍生物,其中在190处的无义突变已被回复,从而产生野生型C端。

当在37℃下测定时,来自河豚(其生活在约26℃)的AID表现出很少的细菌增变活性,而在18℃下可以检测到增变活性(Conticello et al.,Mol.Biol.Evol.,22:367-377(2005))。在细菌乳突形成测定中鉴定了在37℃下给出稳健的乳突形成的河豚AID突变体。如图4a所示,分离的所有第一代突变体均包含C端截短突变(如“*”所示,其中“*a”和“*b”表示导致提前终止密码子的在密码子190处的不同单核苷酸取代),获得的6个突变体包含5种不同截短突变。还鉴定了导致C端区域异读框阅读的突变,其在图4a中被命名为“Ins200a”和“Ins200b”以表示在密码子200处的不同单核苷酸插入突变。

然而,然后在第二代突变体中各种氨基酸取代可以导致增强的乳突形成(图4a),这些氨基酸取代中的几个发生在与人AID中所鉴定的上升突变类似的位置(图3a和4a)。因此,负责河豚AID Mut1.3的活性增加的突变(C88L)发生在与人AID中的T82I突变相当的位置。相似地,河豚AID中的残基F121、L124和L128(每个为两个或三个河豚上升突变体中突变的靶标)全部位于对应也获得上升突变的人AID中的115-121的一段河豚AID中。

虽然在人AID上升突变体组中检测到C端截短,并且先前已证实这样的截短在大肠杆菌中给出更高的增变活性(Barreto et al.,Mol.Cell,12:501-508(2003);Ta et al,Nat.Immunol.,4:843-848(2003)),但是在37℃下所选的所有河豚AID第一代突变体均携带在C端的截短。对这个观察的一个可信的解释是加强(underpinned)的C端突变增加热稳定性,以及在第二代河豚上升突变体中导致乳突形成增加的氨基酸取代在37℃下在没有C端截短突变的情况下可能是不可识别的。然而,这的确看来是可能的解释。如在18℃下所测定的,在存在或不存在C端截短的情况下,C88L和L128P取代均给出突变为Rifr的频率增加。然而,当在37℃下测定时,在没有C端截短的情况下,这些氨基酸取代未给出突变频率的任何可识别的增加(图4b)。

本实施例证实河豚(河豚)AID中增加其活性的突变与人AID中鉴定的某些突变类似。

实施例6

本实施例说明了利用本发明的功能性AID突变蛋白在细胞中增加抗体多样化的方法。

通过流式细胞术监测用基于pExpressPuro2的AID编码载体稳定转染的AID-/-sIgM+ DT40细胞(Teng et al.,Immunity,28:621-629(2008))中的表面IgM缺失来测定IgV的体细胞突变。对于每个构建体,在流式细胞术之前,在选择(0.25μg/ml嘌呤霉素)下扩增3周的12-24个独立转染子中监测sIgM-细胞的百分率。

通过将从100,000个未分选或从(GFP+;sIgM-)-分选的细胞等同物PCR扩增的基因组DNA测序来表征IgVλ区的突变(Sale et al.,Nature,412:921-926(2001))。

为了测定类别转换,如先前所述在从AID-/-小鼠纯化并在LPS+IL4存在下培养(48h)然后用编码AID的反转录病毒感染24h的B细胞中通过流式细胞术分析表面IgG1表达(Di Noia,J.Exp.Med.,204:3209-3219(2007))。为了促进转导的B细胞中AID过量表达程度的减少,如(McBride et al.,J.Exp.Med.,205:2199-2206(2008))所述使用具有突变的Kozak序列的反转录病毒载体。通过在50μl还原SDS样品缓冲液中加热细胞(106个)来制备提取物,SDS/PAGE之后利用兔抗AID抗血清(Abcam)通过蛋白印迹分析监测该提取物中的AID丰度;利用HRP缀合的山羊抗GFP抗血清(Abcam)检测GFP。

在AID缺陷的鸡DT40B细胞系中表达突变体3(T82I)、8(K34E、K160E)和7.3(K10E、E156G、T82I),其中IgV的体细胞突变可以从产生sIgM缺失变体的频率来推断(Arakawa et al.,PLoS Biol.,2:E179(2004))。如通过这种sIgM缺失测定所判断的,Mut3和Mut7.3看来均给出显著增加的体细胞突变(图5a)。此外,序列分析显示在一个月的克隆扩增之后,表达这些突变AID的细胞的确在IgGλ基因中携带比表达野生型酶的对照细胞更高的突变负荷(图5b)。不仅更高比例的序列携带突变,而且那些携带突变的序列还携带更高的突变负荷。当考虑到在这些转染子中突变AID以比其野生型相对部分更低的丰度表达这一事实时,这种效果尤其显著。相比之下,突变体8未给出增加的体细胞突变,这表明了K34E和/或K160E取代可能在B细胞中减少AID功能的方面。有趣的是,在DT40转染子中发现Mut8多肽的丰度比Mut3或7.3多肽高很多。这与其他工作中的观察(例如,Conticello et al.,Mol.Cell,31:474-484(2008))一致,即在DT40细胞中在抗体多样化/基因组突变中表现出折中活性的AID突变体倾向于以更高丰度表达,而在细胞内定位中没有任何明显变化。对于表达水平中的这些差异,一种可能的解释是在细胞转染子中有针对表达高水平的在染色体突变中活跃的AID蛋白的细胞的选择。

使用基于将突变酶反转录病毒转导入AID缺陷的小鼠B细胞的测定来测定类别转换重组中突变AID的活性。为了限制可能饱和转换测定的AID过量表达程度,利用常规的pMX-Ig病毒以及其中通过Kozak序列的突变使转导的AID以低水平表达的变体来进行测定(McBride et al.,J.Exp.Med.,2005:2585-2594(2008))。如图5c所示,其示出了转换为IgG1的代表性流式细胞术图,其中‘mK’表示利用具有突变的Kozak序列的载体进行转导,虽然以较低水平表达,但是Mut7.3在促进类别转换重组中比野生型相对物更有效。

本实施例证实了按照本发明方法使用功能性突变AID蛋白增加抗体多样化。

实施例7

本实施例证实AID突变体增加染色体易位。

使用基于PCR的测定(Janz et al.,Proc.Natl.Acad.Sci.USA.,90:7361-7365(1993))检测B细胞中的c-myc/IgH易位。如实施例6中的类别转换测定所述,用表达AID的反转录病毒转导来自AID缺陷小鼠的B细胞,并且在含有LPS(20μg/ml)和IL4(50ng/ml)的培养基中培养,在6孔板中以8x105个细胞/ml接种。如(Ramiro et al.,Nature,440:105-109(2006))所述,通过Expand Long Template PCR系统(Roche),使从转导之后36h分选的GFPW细胞利用DirectPCR(Viatech)制备的来自2x105个细胞的基因组DNA进行2轮巢式PCR,然后进行DNA印迹以扩增和检测der12c-myc/Igμ和der15c-myc/Igμ易位以及特异性产物。图6(顶部)示出了c-myc和IgH基因座之间相互易位的示意图,并且指示了用于PCR扩增的引物(箭头)和用于DNA印迹杂交的探针(P)。

为了AID表达,反转录病毒转导来自AID缺陷小鼠的B细胞,并且体外培养1-2天。AID Mut7.3导致比野生型酶显著更高比例的含有c-myc/IgH易位的培养物(图6(底部))。

本实施例证实了利用功能性AID突变蛋白增加染色体易位的方法。

实施例8

本实施例证实编码具有增加活性的AID突变体的核酸序列比野生型AID更接近APOBEC3脱氨酶的核酸序列。

进行了网络LOGO比对(Crooks et al.,Genome Research,14:1188-1190(2004))(图7),其示出了AID上升突变的主要位点周围的氨基酸保守性和哺乳动物APOBEC3的Z1、Z2和Z3结构域中的同源区(牛、羊、猪、狗、野猪、马、猫、狗、小鼠、大鼠、人和猕猴:序列登录号如图8所提供)。从LOGO谱的生成中丢弃与任何其他序列具有超过90%氨基酸相同性的任何序列。AID上升突变在编号的残基上方的方框中示出。比对底部的箭头突出APOBEC3中的同源残基。

图7说明APOBEC3家族蛋白在较高等的动物中快速进化并存在多个拷贝:通过序列同源性可以将其锌配位结构域归类入三个亚组(Z1、Z2和Z3)中的一个(Conticello et al.,Mol.Biol.Evol.,22:367-377(2005))。AID序列与APOBEC3序列的比对显示人AID中经常选择的上升突变的大部分有助于使AID的序列更接近其APOBEC3相关物(relative)的序列(图7)。事实上,虽然在F115处的AID上升突变取代了在APOBEC3Z2结构域中相应位置的优选氨基酸(Y),但是在K34、T82和E156处的上升突变全部取代了在APOBEC3Z1结构域中相应位置的优选氨基酸。有趣的是,发现催化上最活跃的APOBEC3结构域正是这些Z 1结构域(LaRue et al.,J.Virol.,83:494-497(2009))。因此,看来虽然AID活性的脱氨基作用可以通过特定上升突变人工增加,但是在AID进化期间而不是在APOBEC3进化期间反选这样的上升突变。

本实施例证实编码具有增加活性的AID突变体的核酸序列比野生型AID更接近APOBEC3脱氨酶的核酸序列。

实施例9

本实施例比较了人(SEQ ID NO:2)和河豚(河豚)(SEQ ID NO:13)AID上升突变。

利用ClustalW2比对人和河豚AID一级序列(例如,Larkin et al.,Bioinformatics,23:2947-2948(2007))(图9)。如实施例3所述通过星号或双下划线表示人AID上升突变(图3a)。河豚AID上升突变因为它们在河豚上升突变体中构成唯一突变或因为该残基在多个河豚上升突变体中突变而被鉴定,这通过插入符(“^”)表示。如图3a,取代的性质如突出的残基上方或下方的方框所示。框出了锌配位基序(HVE,PCYDC)和提示的多核苷酸接触的区域(FCEDRKA)。

本实施例比较了人和河豚(河豚)AID上升突变。

实施例10

本实施例描述了产生功能性AID突变体的方法,其包括用来自AID同系物的相应氨基酸序列代替野生型AID蛋白的氨基酸序列。

将其中氨基酸残基115-123被来自APOBEC3C(AID/3C)、APOBEC3F(AID/3F)和APOBEC3G(AID/3G)的相当区域代替的人AID突变体克隆入细菌表达质粒。通过监测转化入大肠杆菌之后产生利福平抗性菌落的频率来测定这些修饰的AID序列的增变活性。具体来说,使转化了pTrc99/AID质粒的大肠杆菌菌株KL16[Hfr(PO-45)relA1 spoT1 thi-1]在补充了氨苄青霉素(100μg ml-1)和异丙基β-D-1-硫代半乳糖苷(IPTG;1mM)的LB培养基中生长过夜至饱和,并且平板接种至含有氨苄青霉素(100μg ml-1)和利福平(50μg ml-1)的LB低盐琼脂。通过测定每107个平板接种的活细胞从选择中存活的菌落形成细胞的中位数来测量突变频率,每个中位数从12个独立的培养物测定。利用寡核苷酸5′-TTGGCGAAATGGCGGAAAACC(SEQ IDNO:88)和5′-CACCGACGGATACCACCTGCTG-3′(SEQ ID NO:89)PCR扩增之后,通过将rpoB的相关部分(典型地来自25-200个单菌落)测序来确定突变的性质。AID/3C和AID/3F蛋白保持良好的增变活性,同时AID/3G以难以和背景区分的频率产生利福平抗性菌落。利福平抗性由rpoB中有限数量的突变中的一个提供,所获得的突变的性质使得对脱氨酶的靶标特异性有深入了解(Harris et al.,Mol.Cell.,10:1247-1253(2002))。野生型AID优选将在rpoB位置1576的具有5’侧翼嘌呤(G)残基的C残基(C1576)脱氨基。相比之下,其中残基115-123被来自APOBEC3C/F/G的相应区域代替的AID变体表现出对在-1位置的嘧啶的偏好(APOBEC3本身也是如此)。因此,AID/3C和AID/3F表现出rpoB突变谱转移至偏好具有5’-T的靶标(C1535、C1565和C1592),而AID/3G转化子几乎仅靶向具有5’-C的C1691。

本实施例的这个结果证实用来自APOBEC3蛋白的相应序列代替人AID的氨基酸残基115-123改变了AID的特异性活性。

实施例11

本实施例描述了产生功能性AID突变体的方法,其包括用来自AID同系物的相应氨基酸序列代替野生型AID蛋白的氨基酸序列。

虽然实施例10证实AID/3G的增变活性足以产生利福平抗性大肠杆菌中所观察到的rpoB突变分布的转移,但是AID/3G突变体的增变活性显著低于野生型AID,因为其没有产生高于背景的突变为利福平抗性的总频率。为了提高AID/3G突变体的增变活性,产生了2个AID/3G上升突变体(命名为AID1/3G和AID2/3G),其中将3个额外的氨基酸取代(即,AID1:K10E、T82I、E156G;AID2:K34E、E156G、R157T)引入这些蛋白。如通过rpoB突变谱所测定的,这两个AID/3G上升突变体看起来均保留了亲本AID/3G蛋白对5’侧翼C残基的偏好。

还产生了AID变体(命名为AID*、AID*/3F、AID1*/3G等),其中AID的C端部分(包括其核输出序列)缺失。在细菌突变测定中C端截短没有产生对AID突变靶位点偏好的可检测的影响。

为了更详细地分析上述突变AID的生化靶标特异性,作为重组GST-融合蛋白从大肠杆菌提取物部分纯化了各种AID酶,并且在M13缺口双链体测定的背景下用于将单链lacZ靶DNA脱氨基(Bebenek and Kunkel,Methods Enzymol.,262:217-232(1995);Pham et al.,Nature,424:103-107(2003))。在这个测定中,将重组GST-AID与缺口双链体M13lacZ DNA孵育,然后转化入大肠杆菌。

在每个实验中,30-50个突变的M13lacZ克隆的分析产生了471-685个突变的数据库,全部为在C:G对的转换。在AID1的情况下,74%的C突变在侧翼为5’-嘌呤的位点。相比之下,携带从APOBEC3蛋白移植的片段的AID突变体表现为向对侧翼嘧啶的偏好的转移,这在AID/3C和AID/3G蛋白的情况下尤其显著(分别为85%和77%嘧啶)。侧翼核苷酸偏好的这种变化伴随沿lacZ突变分布的变化。考虑到对于大部分AID变体,在分析的475个核苷酸段的单链底物上突变序列携带平均10-16个转换突变,凭借选择lacZ失活,所观察到的突变主要反映突变过程的内在偏好而不广泛偏离。

本实施例的结果证实用来自APOBEC3蛋白的相应序列代替人AID的氨基酸残基115-123改变了AID的特异性活性。

实施例12

本实施例证实突变AID蛋白在B细胞中表现出改变的突变谱。

为了确定改变AID的催化特异性是否导致B细胞中SHM期间引入的核苷酸取代分布的改变,在AID缺陷、ψV缺失的鸡DT40B细胞系中表达实施例10和11所述的突变AID。在DT40B细胞系中,突变主要局限于在C:G对的核苷酸取代,其具有很少来自聚合酶η触发的高变的贡献(Arakawaet al.,PLoS Biol.,2:E179(2004);Di Noia and Neuberger,Nature,419:43-48(2002);Sale et al.,Nature,412:921-926(2001)),这意味着在C:G的突变可以主要归因于AID的直接影响,而不可能是突变创造的第二阶段的结果。在IgV的SHM频率可以从产生sIgM缺失变体的频率来推断(Buerstedde et al.,EMBO J.,9:921-927(1990);Sale et al.,Nature,412:921-926(2001))。这个测定证实AID/3C和AID/3F在SHM中都是好用的。实际上,AID/3C甚至比野生型酶更有效,尤其是当考虑到B细胞提取物中AID/3C多肽的丰度较低。AID/3C的低丰度在多个独立转染子中是明显的。这种低表达的原因反映了过量DNA脱氨酶活性的细胞毒性。

与AID/3C和AID/3F突变体相比,AID1/3G突变体仅给出非常低频率的sIgM缺失变体。然而,通过缺失AID C端部分这种频率显著增加。

为了表征表达各种修饰的AID蛋白的DT40B细胞转染子中的IgV基因高变谱,克隆扩增8周之后,PCR扩增来自每个表达构建体的多个独立转染子的IgVλ片段并测序。结果显示AID活性位点的修饰导致IgVλ突变谱的实质改变。因此,与其中仅19%的突变靶向具有5’侧翼嘧啶的C残基的野生型酶相比,AID/3C和AID1*/3G主要靶向具有5’侧翼嘧啶残基的C残基(分别为68%和75%)。突变谱的这种显著变化在综合数据集以及来自独立克隆的每个数据集中都是明显的。相比之下,AID/3F保持亲本酶对侧翼嘌呤残基的偏好,但是如在缺口双链体lacZ底物上的体外测定所发现的(实施例11),存在向对侧翼鸟嘌呤而不是腺嘌呤的偏好的转移。

通过5’侧翼核苷酸的性质所判断的突变靶向的变化大体上与通过沿IgVλ片段的核苷酸取代分布所确定的改变的突变谱相关。因此,例如,当比较野生型AID与AID1*/3G时,发现IgVλ突变热点在不同位置。通过野生型AID(以及在AID1上升突变体中),热点簇在CDR1内是明显的,朝向CDR2的5’端,并且也在CDR3内,而且如先前所观察的这些热点大部分符合WRC共有序列(Arakawa et al.,PLoS Biol.,2:E179(2004);Sale et al.,Nature,412:921-926(2001);Saribasak et al.,J.Immunol.,176:365-371(2006);Wang et al.,Nat Struct Mol Biol.,16:769-76(2009))。相比之下,利用AID1*/3G获得的IgVλ突变显示减少聚集在CDR1和CDR3中,而集中在具有5’-嘧啶侧翼且在野生型酶的情况下相对少见的区域(FR1和FR3)的热点。

本实施例的结果证实改变AID的活性位点改变通过体外DNA脱氨基作用和通过B细胞转染子中的抗体高变获得的突变谱。

实施例13

本实施例描述了AID突变体“热点”的鉴定。

虽然在体内(DT40 IgVλ)和体外(缺口双链体lacZ)突变测定中,AID/3C和AID1*/3G中的活性位点修饰导致从对侧翼5’-嘌呤的偏好至对侧翼5’-嘧啶的偏好的转移,但是在两个测定中所述转移的性质并不相同。因此,对于AID/3G,虽然在DT40 IgVλ突变谱中T是选择的侧翼嘧啶,但是在体外测定中优选侧翼C。这种差异实质上是由于DT40 IgVλ谱中几个主要热点的倾斜效果,这提示在B细胞中一些方面的高变可以导致产生体外缺口双链体测定中未概括的优势热点。

为了证实这一点,在IgVλ(而不是lacZ)靶序列上进行缺口双链体突变测定,并且将所得的体外突变谱与在DT40B细胞中在相当的(非转录的)IgVλDNA链上观察到的突变谱比较。观察到突变靶向的显著差异。如果将高度突变的序列从用于推断体外突变靶向模式的数据库排除,这些差异同样明显。

为了发现靶向的差异是否反映体内突变可能发生在转录的双链DNA上,而缺口双链体测定使用单链DNA靶标这一事实,利用Bransteitter et al.,J.Biol.Chem.,279:51612-21(2004)所述的测定,进行突变靶向。这种突变靶向测定包括将重组AID与双链DNA孵育,同时从连接的T7聚合酶启动子转录底物内的靶基因(lacZ)。在这个测定中,AID1*/3G显然不同于野生型AID,仍然优选5’-嘧啶,特别是5’-C,而不是在DT40B细胞中观察到的5’-T。为了评价体外转录偶合测定中IgVλ底物内的突变靶向,修改T7连接测定以产生底物,其中IgVλ短片段中未选择的突变可以在遭受紧密连锁的GFP报告基因突变失活的克隆中评分。然而,在这样的测定中发现,正如缺口双链体测定,DT40细胞中在高变期间观察到的在IgVλ位置141(野生型AID)或252(AID1*/3G)的主要热点的相对优势未重新获得。事实上,在转录连接测定中突变靶向看起来与缺口双链体测定中获得的突变靶向更相似,而不是在DT40B细胞中观察到的突变靶向模式。因此,体外测定没有完全概括在B细胞中观察到的IgV热点优势模式。

本实施例的结果证实表达修饰的AID蛋白的B细胞产生改变的热点使用。

实施例14

本实施例描述了将Mut7.3突变转移入犬AID和人AID的效果。

通过将共表达的抗体模板测序来测量HEK293-c18细胞中AID的功能。用含有独特选择标记的三种游离型载体共转染细胞,一种表达抗体重链与嘌呤霉素选择,一种表达抗体轻链与潮霉素选择,以及一种表达AID与杀稻瘟素选择。转染之后,始终用嘌呤霉素和潮霉素培养细胞,但是用杀稻瘟素区别处理。对于用AID“脉冲(pulse)”的细胞,不将杀稻瘟素加入培养物,并且在实验的每周重复AID载体的瞬时转染。对于“稳定”AID细胞,将杀稻瘟素加入培养基,而对于“稳定+脉冲”,则除了每周用AID载体转染之外,用杀稻瘟素培养细胞。在这些实验中检测了3种不同的AID突变体:犬AID(“MutE”)、含有Mut7.3的犬AID(“Mut 7.3E”)和含有Mut7.3的人AID(“人7.3(Human 7.3))(SEQ ID NO:88-93以及图10a和10b),并且测试了2种不同载体构建体的AID表达(即,IRES载体和pEpi载体)。对于IRES载体,通过同一启动子控制AID和杀稻瘟素表达,IRES元件在基因之间。在pEpi载体中,通过不同的启动子控制杀稻瘟素表达。

培养约一个月之后,通过PCR恢复重链可变区用于测序。对于每个独立的细胞转染实验,将94个模板测序,每个实验返回平均88个完整序列。检查测序层析谱以验证观察到的突变的质量,并且通过用突变数除以测序的核苷酸总数然后除以培养的天数来计算突变频率。HEK293-c18细胞的倍增时间为约24小时,因此将培养天数用于归一化每代的突变率。

对于每个AID载体,脉冲、稳定或稳定+脉冲组之间突变频率没有显著差异。此外,对于MutE AID,IRES和pEpi载体之间没有显著差异,Mut7.3E和人7.3之间也没有任何显著差异。然而,pEpi中的Mut 7.3E与IRES中的Mut 7.3E的突变频率差异在统计学上是显著的(p=0.0003)。

本实施例证实Mut7.3可以翻译为犬AID和人AID。

包括出版物、专利申请和专利在内的本文所引用的所有参考文献援引加入本文,与单独和特别指出每个参考文献援引加入本文并在本文中整体示出是相同程度的。

在描述本发明的上下文中(特别是所附权利要求的上下文中),使用术语“一个(a)”和“一个(an)”和“这个(the)”和相似指代应当理解为涵盖单数和复数,除非本文另有指明或者与上下文明确相抵触。除非另有注明,术语“包含”、“具有”、“包括”和“含有”应当理解为开放式术语(即,表示“包括,但不限于”)。除非本文另有指明,本文中值范围的列举仅仅为了作为单独指落在该范围之内的每个独立值的速记方法,并且如在本文中单独列举一样将每个独立值并入本说明书。本文所述的所有方法可以按照任何合适的顺序进行,除非本文另有指明或者与上下文明确相抵触。除非另有要求,本文所提供的任何和所有实例或者示例性语言(如,“例如”)的使用仅为了更好地说明本发明,而不是构成对本发明范围的限制。在本说明书中没有语言应当理解为表示对本发明的实施必需的任何未要求保护的元素。

本文描述了本发明的优选实施方案,包括发明人已知的用于进行本发明的最佳模式。通过阅读前面的描述,这些优选实施方案的变化对于本领域普通技术人员可以变得显而易见。本发明人预期技术人员适当采用这样的变化,并且本发明人意图除了如本文特别描述之外实施本发明。因此,如适用的法律所允许的,本发明包括所附权利要求所列举的主题的所有修饰和等同物。此外,本发明涵盖在其所有可能的变化中的上文所述元素的任何组合,除非本文另有指明或者与上下文明确相抵触。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号