首页> 中国专利> 回弹发生原因分析方法、回弹发生原因分析装置、回弹发生原因分析程序及记录媒体

回弹发生原因分析方法、回弹发生原因分析装置、回弹发生原因分析程序及记录媒体

摘要

本发明的回弹发生原因分析方法具有:计算成形品的成形数据的成形解析工序;分解为面内应力成分和弯曲力矩成分的成分分解工序;生成运算前独立分解成形数据的运算前独立分解成形数据生成工序;生成运算后独立分解成形数据的运算处理工序;解析第1回弹形状和第2回弹形状的回弹解析工序;求出根据包含在上述成形数据中的回弹前的形状、上述第1回弹形状、和上述第2回弹形状而计算出的上述各区域的应力的对回弹变形的影响度的影响度计算工序;显示对于回弹变形的影响度的显示工序。

著录项

  • 公开/公告号CN102264486A

    专利类型发明专利

  • 公开/公告日2011-11-30

    原文格式PDF

  • 申请/专利权人 新日本制铁株式会社;

    申请/专利号CN200980152231.1

  • 发明设计人 宫城隆司;田中康治;小川操;

    申请日2009-06-24

  • 分类号B21D22/00(20060101);G06F17/50(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人徐殿军

  • 地址 日本东京

  • 入库时间 2023-12-18 03:55:54

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-06-28

    专利权人的姓名或者名称、地址的变更 IPC(主分类):B21D22/00 变更前: 变更后: 申请日:20090624

    专利权人的姓名或者名称、地址的变更

  • 2013-11-06

    授权

    授权

  • 2013-05-01

    专利申请权的转移 IPC(主分类):B21D22/00 变更前: 变更后: 登记生效日:20130408 申请日:20090624

    专利申请权、专利权的转移

  • 2012-01-11

    实质审查的生效 IPC(主分类):B21D22/00 申请日:20090624

    实质审查的生效

  • 2011-11-30

    公开

    公开

说明书

技术领域

本发明涉及在将汽车用部件或家电部件等用钢板或其他金属板挤压成 形时、用来分析在成形品上发生的回弹(spring back)的发生原因的、回弹 原因分析方法、回弹原因分析装置、回弹原因分析程序及记录媒体。以下 对钢板进行说明,但本发明也能够适用于其他金属板或塑料板、线材等。

本申请基于2008年12月25日在日本提出申请的特愿2008-329099 号并主张其优先权,这里引用其内容。

背景技术

门或保险杠等的许多汽车用部件、电冰箱的面板等的家电部件通过将 钢板或其他金属板挤压成形的方法制造。近年来,对于这些部件的轻量化 的要求提高。因此,通过使用具有高强度的钢板,实现了这些部件的薄壁 化和轻量化。但是,如果将钢板高强度化,则变形阻力变高。因此,容易 发生在挤压成形时因产生的残留应力而造成的回弹。

特别是,最近,为了开发工序数及成本削减,有在汽车等的设计阶段 开始的同时、开始研究成形部件的成形方法的设计阶段的趋势。因此,使 用计算机进行将挤压成形品的形状及其成形数据解析的处理。在该解析中, 根据成形后的残留应力对预想的挤压成形品的回弹量进行运算。并且,与 运算后的回弹量相对应地进行模具形状修正。

在专利文献1或非专利文献1中,公开了上述那样的、预想回弹来决 定模具形状的方法。具体而言,将被模具挤压的钢板的、挤压下死点的钢 板的残留应力通过有限元法(FEM,finite element method)解析,将通过 其残留应力和相反方向残留应力而发生的变形(前弹)形状的模具进行数 值解析。由此,简单地得到考虑了回弹的模具形状。

但是,通过数值解析来设计全面考虑到回弹的模具因为非线性问题而 非常困难。因而,在上述文献中公开的方法只是通过有限元法得到考虑到 回弹的、简单的模具形状的方法。因而,关于在通过得到的模具而被挤压 成形的成形品不满足回弹的容许值的情况下的对策,由于难以在数值上解 析,所以没有表示任何解决方法。

因此,在利用考虑到回弹的模具却不能得到满足回弹的容许值的成形 品的情况下,采用怎样的对策取决于技术者的经验。因而,实际制作模具, 不得不一边挤压实际的钢板一边反复进行模具形状的修正。

除此以外,还提出了不是通过模具形状、而是通过对钢材或成形品的 形状施加用来将残留应力除去的修正、来减少回弹的方法。这样的修正方 法的一例是将成形品的回弹发生部位的一部分做成开孔形状、或开设有缝 隙的形状的方法。

根据这样的方法,通过向回弹发生部位的对策,降低了作为回弹的原 因的残留应力。但是,通过切断或开孔,部件自身的刚性下降,所以具有 即使通过很小的残留应力也发生较大的回弹的倾向。因此,该方法也没有 达到根本的原因探明。进而,这样的对策需要实际进行基于试验模具和钢 板的测试,所以产生设计阶段的工序数和成本的增大的问题。

在专利文献2到5中,也公开了通过有限元法的模拟。其中,在专利 文献2到4的方法中,使用了部分应力释放及变更的方法。但是,例如在 专利文献2中,仅将各部分的回弹前后的角度变化量、即扭转作为评价对 象。因此,关于扭转以外的变形因素完全没有考虑。此外,在专利文献2 中,在应力释放时将释放部位的应力的全部成分设为0。因此,在伴随着大 变形的情况下,如果将应力梯度进行线性近似,则有与实际非线性变形的 不一致变大的问题。

现有技术文献

专利文献

专利文献1:日本特开2003-33828号公报

专利文献2:日本特开2007-229724号公报

专利文献3:日本特开2008-49389号公报

专利文献4:日本特开2008-55476号公报

专利文献5:日本特开2004-148381号公报

非专利文献

非专利文献1:三自動車テクニカルレビュ一(三菱汽车技术视点) (2006年No.18,126~131页)

发明概要

发明要解决的问题

如上所述,以往进行通过数值解析法而将挤压成形工序及挤压成形品 解析的处理。但是,在进行实际的成形测试以前的设计阶段中,难以正确 地掌握挤压成形品的回弹的发生原因。

发明内容

因而,本发明的目的是提供一种回弹发生原因分析技术,该分析技术 能够通过数值解析比以往更正确地分析成为挤压成形品回弹的发生原因的 部位,并由此能够削减成形部件的成形方法的研究时间及研究成本。

用于解决问题的手段

本发明为了解决上述问题而采用以下的技术方案。

(1)本发明的回弹发生原因分析方法,具有:成形解析工序,基于塑 性加工成形的成形品的成形条件,通过数值模拟进行成形解析,计算上述 成形品的成形数据;成分分解工序,对于包含在上述成形品的成形数据中 的应力数据,遍及上述成形品的整体,对于应力的各方向成分的至少一个 方向成分,分解为面内应力成分和弯曲力矩成分;运算前独立分解成形数 据生成工序,根据上述成形品的成形数据,生成关于分解后的上述方向成 分的应力仅具有面内应力成分的第1独立分解数据、和关于分解后的上述 方向成分的应力仅具有弯曲力矩成分的第2独立分解数据中的至少一个独 立分解成形数据,作为运算前独立分解成形数据;运算处理工序,对上述 成形品进行区域分割,按照各区域,对于该区域,对上述运算前独立分解 成形数据的应力的至少一个方向成分进行运算处理,由此生成运算后独立 分解成形数据;回弹解析工序,解析通过对上述运算前独立分解成形数据 的数值模拟求出的第1回弹形状、和通过对上述运算后独立分解成形数据 的数值模拟求出的第2回弹形状;影响度计算工序,求出根据包含在上述 成形品的成形数据中的回弹前的形状、上述第1回弹形状、和上述第2回 弹形状而计算出的上述各区域的应力的对回弹变形的影响度;以及显示工 序,按照上述各区域,显示上述计算出的对回弹变形的影响度。

(2)在上述(1)的回弹发生原因分析方法中,也可以是,上述成形 解析工序通过使用多个元素的有限元法的数值模拟来进行;将上述成形品 的成形数据中的各元素的应力的各方向成分的板厚方向平均作为上述方向 成分的面内应力成分,将从按照各元素发生的全部积分点的应力值的各方 向成分减去上述面内平均应力后的值作为上述方向成分的弯曲力矩成分。

(3)在上述(1)的回弹发生原因分析方法中,上述运算处理也可以 是对上述运算前独立分解成形数据的应力的各方向成分的至少1个乘以-2 ≤k≤2范围的系数k的运算。

(4)在上述(3)的回弹发生原因分析方法中,上述系数k的范围也 可以是0<k≤1。

(5)在上述(4)的回弹发生原因分析方法中,上述系数k的范围也 可以是0.5≤k≤0.95。

(6)在上述(1)的回弹发生原因分析方法中,上述成形品也可以是 挤压成形品。

(7)本发明的回弹发生原因分析装置,具有:成形解析部,基于塑性 加工成形的成形品的成形条件,通过数值模拟进行成形解析,计算上述成 形品的成形数据;成分分解部,对于包含在上述成形品的成形数据中的应 力数据,遍及上述成形品的整体,对于应力的各方向成分的至少一个方向 成分,分解为面内应力成分和弯曲力矩成分;运算前独立分解成形数据生 成部,根据上述成形品的成形数据,生成关于分解后的上述方向成分的应 力仅具有面内应力成分的第1独立分解数据、和关于分解后的上述方向成 分的应力仅具有弯曲力矩成分的第2独立分解数据中的至少一个独立分解 成形数据,作为运算前独立分解成形数据;运算处理部,对上述成形品进 行区域分割,按照各区域,对于该区域,对于上述运算前独立分解成形数 据的应力的至少一个方向成分进行运算处理,由此生成运算后独立分解成 形数据;回弹解析部,解析通过对上述运算前独立分解成形数据的数值模 拟求出的第1回弹形状、和通过对上述运算后独立分解成形数据的数值模 拟求出的第2回弹形状;影响度计算部,求出根据包含在上述成形品的成 形数据中的回弹前的形状、上述第1回弹形状、和上述第2回弹形状而计 算出的上述各区域的应力的对回弹变形的影响度;以及显示部,按照上述 各区域,显示上述计算出的对回弹变形的影响度。

(8)在上述(7)的回弹发生原因分析装置中,上述显示部也可以按 照上述各区域将上述计算出的对回弹变形的影响度进行等值线(contour) 显示。

(9)本发明的回弹发生原因分析程序,具有:成形解析工序,基于塑 性加工成形的成形品的成形条件,通过数值模拟进行成形解析,计算上述 成形品的成形数据;成分分解工序,对于包含在上述成形品的成形数据中 的应力数据,遍及上述成形品的整体,对于应力的各方向成分的至少一个 方向成分,分解为面内应力成分和弯曲力矩成分;运算前独立分解成形数 据生成工序,根据上述成形品的成形数据,生成关于分解后的上述方向成 分的应力仅具有面内应力成分的第1独立分解数据、和关于分解后的上述 方向成分的应力仅具有弯曲力矩成分的第2独立分解数据中的至少一个独 立分解成形数据,作为运算前独立分解成形数据;运算处理工序,对上述 成形品进行区域分割,按照各区域,对于该区域,对于上述运算前独立分 解成形数据的应力的至少一个方向成分进行运算处理,由此生成运算后独 立分解成形数据;回弹解析工序,解析通过对上述运算前独立分解成形数 据的数值模拟求出的第1回弹形状、和通过对上述运算后独立分解成形数 据的数值模拟求出的第2回弹形状;影响度计算工序,求出根据包含在上 述成形品的成形数据中的回弹前的形状、上述第1回弹形状、和上述第2 回弹形状而计算出的上述各区域的应力的对回弹变形的影响度;以及显示 工序,按照上述各区域,显示上述计算出的对回弹变形的影响度。

(10)在上述(9)的回弹发生原因分析程序中,也可以是,上述成形 解析工序通过使用多个元素的有限元法的数值模拟来进行;将上述成形品 的成形数据中的各元素的应力的各方向成分的板厚方向平均作为上述方向 成分的面内应力成分,将从按照各元素发生的全部积分点的应力值的各方 向成分减去上述面内平均应力后的值作为上述方向成分的弯曲力矩成分。

(11)本发明的计算机可读取的记录媒体记录上述(9)所述的回弹发 生原因分析程序。

(12)本发明的回弹发生原因分析方法,具有:成形解析工序,基于 塑性加工成形的成形品的成形条件,通过数值模拟进行成形解析,计算上 述成形品的成形数据;成分分解工序,对于包含在上述成形品的成形数据 中的应力数据,遍及上述成形品的整体,对于应力的各方向成分的至少一 个方向成分,分解为面内应力成分和弯曲力矩成分;运算前独立分解成形 数据生成工序,根据上述成形品的成形数据,生成关于分解后的上述方向 成分的应力仅具有面内应力成分的第1独立分解数据、和关于分解后的上 述方向成分的应力仅具有弯曲力矩成分的第2独立分解数据中的至少一个 独立分解成形数据,作为运算前独立分解成形数据;运算处理工序,对上 述成形品进行区域分割,按照各区域,对于该区域,对于上述运算前独立 分解成形数据的应力的至少一个方向成分进行运算处理,由此生成运算后 独立分解成形数据;回弹解析工序,解析通过对上述运算后独立分解成形 数据的数值模拟求出的回弹形状;影响度计算工序,求出根据包含在上述 成形品的成形数据中的回弹前的形状和上述回弹形状而计算出的上述各区 域的应力的对回弹变形的影响度;显示工序,按照上述各区域,显示上述 计算出的对回弹变形的影响度。

发明效果

根据本发明,能够正确地分析回弹发生原因,能够缩短成形品的成形 方法的研究时间。

此外,通过本发明,能够进行在实际的部件中无法进行的发生原因的 分析,能够将研究回弹对策的方法详细地分解而研究。

在本发明中,对挤压成形品进行区域分割,按照各区域关于对应区域 进行将系数k乘以上述的独立分解成形数据的应力的各方向成分的至少一 个的运算处理。优选的是将上述系数k设为-2≤k≤+2(包括零)。在系数 k是零的情况下,使运算简单化,能够通过计算出的影响度明确地评价对于 回弹变形的各区域的应力的影响。此外,在系数k为接近于+1的值的情况 下,能够进行更高精度的影响度的计算及评价。与系数k取零时相比取接 近于1的值时评价精度提高是因为实际上在应力与位移之间具有非线性。 在变形较小的情况下,对于位移的编辑前后的应力梯度在近似于线性的情 况下、与在实际的非线性的情况下几乎没有差别,即使将系数k设为零而 进行运算处理,各区域的与回弹相对的应力的影响度的值也在进行分析评 价后能够得到足够精度的值。相对于此,在伴随着大变形的情况下,对于 位移的编辑前后的应力梯度在近似于线性的情况下、与在实际的非线性的 情况下的差别变大,如果进行线性近似则带来误差。对此,将编辑后的应 力进行运算处理以使其取接近于编辑前的应力的值(系数k近似于1),从 而对于变形的编辑前后的应力梯度变为在接近于实际的非线性的情况的状 态下进行运算处理,各区域的与回弹相对的应力影响度的值与系数k为零 的情况相比其评价精度提高(图10)。特别是,系数k采用接近于+1的值 是有利的。

附图说明

图1是表示本发明的回弹发生原因分析装置的结构的图。

图2是表示本发明的回弹发生原因分析方法的概要的图。

图3是表示进行回弹发生原因分析处理的装置的硬件结构的一例的图。

图4是表示实施例1的挤压成形品的形状的立体图。

图5是表示将实施例1的挤压成形品分割后的情况下的分割区域的图。

图6是表示基于根据挤压成形解析得到的原始数据而进行回弹解析后 的结果的图。

图7A是表示对弯曲力矩成分(偏差应力)分解数据进行运算处理后的 各区域中的回弹量的图。

图7B是表示对面内应力成分(平均应力)分解数据进行运算处理后的 各区域中的回弹量的图。

图8A是实施例2的挤压成形品的形状的说明图。

图8B是表示实施例2的挤压成形品的分割区域和固定点的图。

图9A是实施例3的挤压成形品的形状的说明图。

图9B是表示实施例3的挤压成形品的分割区域和固定点的图。

图10是表示应力与位移的关系的曲线图。

图11A是实施例5的挤压成形品的形状的说明图。

图11B是表示实施例5的挤压成形品的分割区域和固定点的图。

图11C是说明与实施例5的挤压成形品相关联的、绕X轴旋转的扭转 角的图。

图12A是实施例6的挤压成形品的形状的说明图。

图12B是表示实施例6的挤压成形品的分割区域和固定点的图。

图13A是实施例7的挤压成形品的形状的说明图。

图13B是表示实施例7的挤压成形品的分割区域和固定点的图。

图14A是实施例8的挤压成形品的形状的说明图。

图14B是表示实施例8的挤压成形品的分割区域和固定点的图。

图14C是说明与实施例5的挤压成形品相关联的、4节点的相对位移 (扭转)的图。

图15A是实施例9的挤压成形品的形状的说明图。

图15B是表示实施例9的挤压成形品的分割区域和固定点的图。

图16A是表示实施例9的挤压成形品的全局坐标的图。

图16B是图16A的F-F剖视图。

图17A是表示实施例9的挤压成形品的本地坐标的图。

图17B是图17A的G-G剖视图。

具体实施方式

以下,以对将薄板材料挤压成形而制作的产品的回弹发生原因分析为 例说明本发明的优选的实施方式,但本发明的适合对象并不限定于此。本 发明例如在通过辊轧成形(Roll forming)的成形、或成形线材等的情况下 也能够采用。

首先,在图1中表示本发明的回弹发生原因分析装置1的功能结构图。 该回弹发生原因分析装置1具有成形条件输入部2、挤压成形解析部3、分 解成形数据生成部4、区域分割及运算处理部5、回弹解析部6、影响度计 算部19、作为显示部的影响度输出画面20、文件保存部S。

成形条件输入部2是将在挤压成形解析部3、回弹解析部6中作为解析 对象的钢板的形状数据(板厚、长度、宽度、曲率、歪斜等)、性状(强度、 延伸等的材质)、模具形状(冲模(die)及冲头(punch)形状、曲率、直 径、间隙、润滑条件)、挤压条件(防皱装置载荷、衬垫载荷、突条张力(bead tension)、挤压力、温度)等的成形条件输入的输入部。此外,还能够另外 设定并输入成形解析中的数据区域、分解成形数据生成部4中的数据区域、 区域分割及运算处理部5中的数据区域、将分析结果显示在输出画面上时 的分割区域等。

挤压成形解析部3基于来自成形条件输入部2的输入信息,通过数值 解析求出被挤压成形的成形品的形状、应力、歪斜、板厚等。作为数值解 析的方法,可以采用弹塑性有限元法、刚塑性有限元法、一步有限元法、 边界元素法等。挤压成形解析部3以被加工物的板厚、应力的成分值、歪 斜的成分值的变量、或该变量的分布等形式输出数值解析结果。该输出数 据(原始数据)例如作为文件“Porg.k”向分解成形数据生成部4、区域分 割及运算处理部5、回弹解析部6、影响度计算部19输出,并保存到文件 保存部S中。

另外,该挤压成形解析部3中的数值解析可以使用有限元法设定上述 的形状数据、性状、模具形状、挤压条件等的成形条件,进行成形解析, 在数值上得到成形后的应力、歪斜等的分布。这里,作为进行基于有限元 法的数值解析的软件,也可以使用例如作为市场销售的软件的、PAM- STANP、LS-DYNA、AUTOFORM、OPTRIS、ITAS-3D、ASU/P-FORM、 ABAQUS、MARC、HYSTAMP、HYPERFORM、SIMEX、FASTFORM- 3D、QUICKSTAMP等。

分解成形数据生成部4将由挤压成形解析部3得到的挤压成形品的成 形数据遍及整个挤压成形品、并对于各元素的应力的各方向成分的至少一 个方向分解为面内应力成分和弯曲力矩成分。并且,关于由挤压成形解析 部3得到的挤压成形品的成形数据的、分解后的方向成分的应力,生成仅 具有面内应力成分的独立分解数据、和仅具有弯曲力矩成分的独立分解数 据。这里,面内应力成分是成形品的面内方向应力的板厚方向分布的平均 应力成分。弯曲力矩成分是从成形品的面内方向应力的板厚方向分布的偏 差应力即面内方向应力的板厚方向分布减去平均应力成分后的、具有板厚 方向分布的应力成分。

所以,按照成形解析结果的各元素,将板厚方向分布的平均应力按照 各元素对板厚方向的全部积分点进行分配,生成面内应力成分分解数据。 此外,通过将从原始成形解析结果中提取的平均应力按照元素从发生的板 厚方向的全部积分点的应力值中减去,生成弯曲力矩成分分解数据。即, 将成形数据中的平均应力作为面内应力成分、并将按照元素从发生的板厚 方向的全部积分点的应力值减去面内平均应力后的值设为弯曲力矩成分就 可以。

这里,关于应力的向各方向成分的分解,也可以将整体坐标系作为基 准进行分解。此外,也可以按照各元素、以基于构成对应元素的节点的坐 标的局部坐标系为基准进行分解。此外,也可以是,在各元素的挤压成形 解析中的初始状态即挤压中的初始毛坯(blank)的状态下,基于整体坐标 系对各元素设定局部坐标系,使对各元素设定的该局部坐标系跟随挤压成 形中的各元素的变形而移动、并基于旋转后的挤压成形后的坐标系进行分 解。

这样,能够得到数据“P rem.hei.k”和数据“P rem.hen.k”。另外,“P rem.hei.k”是将对挤压成形品的成形条件进行数值解析而得到的成形解析 结果数据遍及挤压成形品整体、并对于应力的各方向成分的至少一个方向 分解为面内应力成分后的独立分解数据。另一方面,“P rem.hen.k”是将对 挤压成形品的成形条件进行数值解析而得到的成形解析结果数据遍及挤压 成形品整体、并对于应力的各方向成分的至少一个方向分解为弯曲力矩成 分后的独立分解数据。将这些独立分解数据向区域分割及运算处理部5及 回弹解析部6输出,并保存到文件保存部S中。

区域分割及运算处理部5将分解成形数据生成部4的输出数据文件“P rem.hei.k”和“P rem.hen.k”输入,基于挤压成形品的形状数据分割为多个 区域,按照区域进行运算处理,作为其结果而将与各区域相对应的“P rem2.hei.k”和“P rem2.hen.k”向回弹解析部6输出,并保存到文件保存部 S中。另外,所谓运算处理,是按照对“P rem.hei.k”和“P rem.hen.k”进 行了区域分割后的各区域、仅关于对应区域对于应力的各方向成分的至少 一个进行运算。作为具体的运算的方法,可以举出乘以系数k的运算。系 数k优选的是设为-2≤k≤+2。系数k更优选的是设为0<k≤1,系数k更 优选的是设为0.5≤k≤0.95。

上述的运算处理,是将区域分割后的仅其中特定区域的应力成分乘以 下述的系数ki(i=1~6)。

σx=k1×σx0

σy=k2×σy0

σz=k3×σz0

τxy=k4×τxy0

τyz=k5×τyz0

τzx=k6×τzx0

这里,将所选择的区域的积分点中的前面的应力成分表示为(σx0,σy0, σz0,τxy0,τyz0,τzx0)。另一方面,将运算处理后的应力成分表示为(σx, σy,σz,τxy,τyz,τzx)。系数ki是-2≤ki≤+2,既可以将ki的全部设为 零,也可以将至少1个设为零、将其他在上述范围内设为零以外的值。

区域分割及运算处理部5从输入数据中取得挤压成形品的数据、并进 行将挤压成形品的数据分割为多个区域的处理。关于区域分割方法,可以 基于挤压成型品的形状、通过均等的尺寸分割区域。此外,也可以基于挤 压成形前的在板材的状态下的形状、通过均等的尺寸进行分割。此外,作 为用来决定成形品的分割区域的方法,也有基于曲率及挤压成形解析结果 的应力的大小而决定分割区域的方法、以及通过解析操作者的指定而进行 的方法。

回弹解析部6将分解成形数据生成部4的输出数据文件“P rem.hei.k” 及“P rem.hen.k”、以及区域分割及运算处理部5的输出数据文件“P rem2.hei.k”及“P rem2.hen.k”作为输入数据使用,进行回弹解析。并且, 计算回弹后的形状,作为计算结果的数据,将“SB rem.hei.k”、“SB rem.hen.k”、 “SB rem2.hei.k”、和“SB rem2.hen.k”向影响度计算部19输出并保存到文 件保存部S中。回弹解析基于由分解成形数据生成部4及区域分割及运算 处理部5得到的板厚、应力成分值、歪斜的成分值等的变量及变量的分布, 通过弹性有限元法、弹塑性有限元法、一步有限元法等进行载荷卸除过程 的计算,将在成形品中发生的回弹后的形状进行数值解析。得到作为有限 元素解析数据的该回弹形状(各元素数据及构成各元素的节点数据)。

影响度计算部19基于作为挤压成形解析部3的解析结果的挤压成形数 据、以及作为回弹解析部6的解析结果的“SB rem.hei.k”、“SB rem.hen.k”、 “SB rem2.hei.k”、和“SB rem2.hen.k”,按照被区域分割后的各区域计算对 回弹的影响度。

对回弹的影响度通过比较将由分解成形数据生成部4生成的独立分解 数据“P rem.hei.k”及“P rem.hen.k”作为输入数据的回弹量、和将区域分 割及运算处理部5的输出数据文件“P rem2.hei.k”及“P rem2.hen.k”作为 输入数据的回弹量来计算。

作为影响度的评价对象的回弹量也可以是特定的点(有限元素数据的 特定的节点)的回弹前后的坐标的差(=位移)、或将特定的两个点连结的 线的回弹前后的角度的差(=扭转)、或特定的两个点的相对位移的差的回 弹前后的差(=相对位移)、或将特定的两个点连结的线与将另外的特定的 两个点连结的线所成的角度的回弹前后的差(=相对扭转)等。

独立分解数据“P rem.hei.k”及“P rem.hen.k”的回弹量如以下这样求 出。即,将作为挤压成形解析部3的解析结果的挤压成形数据的形状设为 回弹前的形状,将作为回弹解析部6的解析结果的“SB rem.hei.k”及“SB rem.hen.k”设为回弹后的形状,通过取其差来求出。

按照分割区域进行了运算处理的“P rem2.hei.k”及“P rem2.hen.k”的 回弹量如以下这样求出。即,将作为挤压成形解析部3的解析结果的挤压 成形数据的形状设为回弹前的形状,将作为回弹解析部6的解析结果的“SB rem2.hei.k”及“SB rem2.hen.k”设为回弹后的形状,通过取其差来求出。

对回弹的影响度通过将独立分解数据“P rem.hei.k”及“P rem.hen.k” 的回弹量、和按照分割区域进行了运算处理的“P rem2.hei.k”及“P rem2.hen.k”的回弹量的差乘以“进行了运算处理时的系数k-1”的倒数来 求出。此外,在分割后的区域的面积不均等的情况下等,还可以用区域的 面积除、作为每单位面积的影响度计算。

此外,上述的回弹量基于由原始数据文件“P org.k”设定的固定点的 回弹解析而计算。但是,回弹量根据固定点的选取方法而较大地变化。因 而,在用别的固定点求出回弹影响度的情况下,优选的是,在对作为挤压 成形解析部3的解析结果的挤压成形数据、和作为回弹解析部6的解析结 果的“SB rem.hei.k”、“SB rem.hei.k”、“SB rem2.hei.k”、“SB rem2.hei.k” 进行了在想要评价的固定点处的对位(移动、旋转)后、进行上述的对回 弹的影响度的计算。由此,能够不进行再次的成形解析及回弹解析而容易 地求出别的固定点处的回弹影响度。

在影响度计算部19中,通过将上述的对回弹的影响度的计算按照分割 后的各区域依次进行,能够求出遍及挤压成形品的整体的对回弹的影响度 的分布。

在影响度显示部输出画面20中,优选的是将对于回弹的各分割区域的 影响度进行等值线显示。如后述的实施例所示,根据本发明,对分解为面 内应力成分及弯曲力矩成分的独立分解数据、和按照基于挤压成形品分割 的各区域对对应区域的应力成分的至少一个方向进行乘以系数k的运算处 理得到的独立分解数据,进行回弹解析。并且,计算各区域的各方向成分 的应力的对回弹的影响度。在本发明中,既可以将这样计算出的影响度分 别单独显示,也可以遍及部件整体进行等值线显示。此外,也可以将这些 显示按照应力成分显示。通过这样的显示,能够比以往更容易且正确地进 行回弹的发生原因的分析。

图2是表示以上说明的本发明的回弹发生原因分析方法的流程的图。 如图2所示,在S1中从成形条件输入部2进行成形条件的输入。接着,在 S2中,由挤压成形解析部3进行基于挤压成形品的成形条件的数值解析、 计算挤压成形品的成形数据的挤压成形解析处理。接着,在S3中,通过分 解成形数据生成部4将应力分解为面内应力成分和弯曲力矩成分,生成独 立分解数据。接着,在S4中,通过区域分割及运算处理部5将挤压成形品 的数据分割为多个区域,按照各区域对于应力数据的至少一个方向实施运 算处理,生成运算处理数据。接着,在S5中,通过回弹解析部6进行回弹 解析,计算回弹后的形状。接着,在S6中,通过影响度计算部7基于回弹 后的形状计算各分割区域的对回弹的影响度。并且,在S7中,通过显示部 8将其结果在显示部的画面上进行等值线显示、或向打印机输出。基于这样 得到的输出结果,如果需要,则可以在S9中通过固定条件变更处理部9变 更回弹的固定点而计算对回弹的影响度,进行详细的评价。

基于上述那样的回弹发生原因分析方法,能够进行成形品的成形。例 如,基于上述回弹发生原因分析方法结果,能够确定对回弹的影响度较高 的分割区域。在这样确定的回弹原因区域中,在作为回弹发生原因的面内 平均应力、偏差应力的某一方较高的情况下,可以分别对应于发生原因而 采取单独的对策。通过这样对模具加以适当的设计变更,能够制造抑制了 回弹的成形品。

图3是表示进行上述的回弹发生原因分析处理的装置的硬件结构的一 例的图。挤压成形解析部3、分解成形数据生成部4、区域分割及运算处理 部5、回弹解析部6中的各处理由回弹发生原因分析程序10规定,并由计 算机执行。计算机具备CPU11、保存处理结果的存储器12、作为显示部的 显示器13、键盘及鼠标等的输入装置14、硬盘15、CD/DVD驱动器那样 的外部存储装置16、NIC(网络接口卡)17、打印机18等。另外,上述的 回弹发生原因分析程序10可以记录在计算机可读取的记录媒体中而流通。 以下,通过实施例更具体地说明本发明。

实施例

(实施例1:将全部应力成分设为零的例子)

图4是表示本发明的实施例1的挤压成形品的形状的立体图。首先, 使用基于有限元法的市场销售的板成形模拟解析软件LS-DYNA进行挤 压成形解析处理。作为金属板的性状,使用了板厚1.6mm、拉伸强度590MPa 等级的高强度钢板的数据。此外,将模具(冲模、冲头、夹持器)的形状 模型化为壳体元素,假定为刚体而进行解析。模具间隙设定为0mm。摩擦 系数设定为0.15。成形载荷设定为3000kN。

生成分解为面内应力成分(平均应力)和弯曲力矩成分(偏差应力) 的独立分解数据的程序将输出了由挤压成形解析得到的应力及歪斜的文件 作为输入信息取入,根据该取入的输入信息生成独立分解数据。这里,将 从原始成形解析结果中提取的各元素的平均应力按照对应元素对板厚方向 的全部积分点进行分配,生成面内应力成分分解数据。此外,通过将从原 始成形解析结果中提取的平均应力按照元素从产生的板厚方向的全部积分 点的应力值中减去,生成弯曲力矩成分分解数据。

执行区域分割及运算处理的程序将输出从独立分解数据得到的应力及 歪斜的文件作为输入数据取入,为了进行运算处理而将挤压成形品的区域 分割。图5是表示本发明的实施例1的、将图4所示的挤压成形品分割的 情况下的分割区域的图。这里,对属于各区域的元素的全部积分点进行运 算处理。在运算处理中,通过对全部应力成分乘以系数零,设为σx=0、σy=0、 σz=0、τxy=0、τyz=0、τzx=0。

这里,将所选择的区域的积分点的运算前的应力成分表示为(σx0,σy0, σz0,τxy0,τyz0,τzx0)。另一方面,将所选择的区域的积分点的运算处理 后的应力成分表示为(σx,σy,σz,τxy,τyz,τzx)。将运算出的应力通过 文件输出作为运算结果文件输出。

接着,使用上述的软件LS-DYNA进行回弹解析处理。将上述区域分 割及运算处理执行程序的输出结果输入到软件LS-DYNA中而实施回弹 解析。回弹解析使用基于静态隐式法的弹性解析。将各区域中的运算处理、 回弹解析进行区域分割数的次数的重复。

图6表示基于根据本发明的实施例1的挤压成形解析得到的原始数据 而实施回弹解析的结果。该图6是评价Y方向的位移的图。图中的 Vmax=0.49mm表示Y方向的位移为最大的位置处的回弹量是0.49mm。

图7A、图7B是分析与图6中的Vmax=0.49mm的回弹量相对的弯曲 力矩成分(偏差应力)及面内应力成分(平均应力)的影响遍及部件整体 产生怎样影响的例子。

图7A表示对于本发明的实施例1的弯曲力矩成分(偏差应力)分解数 据进行运算处理后的各区域中的回弹量。

图7B表示对于本发明的实施例1的面内应力成分(平均应力)分解数 据进行运算处理后的各区域中的回弹量。

如图7A、及图7B所示,将对于图6的Y方向最大位移位置处的Y方 向位移(Vmax)的回弹发生原因部位分离为面内应力成分的影响和弯曲力 矩成分的影响,能够确定其影响程度。在表示偏差应力的影响的图7A中, 由A表示的部位的影响量是+0.28mm,由B表示的部位的影响量是- 0.43mm,由C表示的部位的影响量是+0.21mm,由D表示的部位的影响量 是+0.34mm。此外,在表示平均应力的影响的图7B中,由E表示的部位的 影响量是+0.10mm。根据图7A、图7B可以判明,Y方向的回弹量混杂有 面内应力成分及弯曲力矩成分的影响。

如上述实施例1所示,根据本发明,能够将回弹的发生原因部位定量 地分析,进而,能够通过数值解析容易且正确地分析该部位是起因于面内 应力成分还是起因于弯曲力矩应力成分。进而,通过将其结果可视地显示, 能够容易地确定回弹发生原因部位。该分析能够不使用实际的模具及钢板 而在计算机上执行。因而,在设计阶段中能够容易地进行成形方法的研究。

(实施例2:仅将面内应力成分的σy设为零的例子)

在上述实施例1中,进行了对属于各区域的元素的全部积分点的全部 应力成分乘以系数零的运算处理,以下表示各种变形。图8A表示实施例2 的挤压成形品的形状。图8B表示图8A所示的挤压成形品的分割区域。在 图8B中,将3个用圆表示的点作为固定点,根据原始数据生成仅具有面内 应力成分的独立分解数据,进行对面内应力的分析。作为回弹量,评价由 Za表示的部位处的Z轴方向(垂直于纸面的方向)位移量。

将挤压成形品的整体分割为区域801~区域805的5个区域,如表1 所示那样仅对各区域中的面内应力成分中的、在该实施例2中被认为最具 影响的σy乘以零,使其他应力成分保持原样(即系数k=1)。将基于这样 得到的运算应力而进行了回弹解析的结果表示在表1的下段中。根据表1 可知,将区域804的σy设为零的情况下的影响比例为最大。即,在实施例 2中,可知区域803和区域804中的Y轴方向的面内应力成分是作为面内 应力起因的Za部的Z方向位移的回弹量的主要发生原因。另外,基于仅具 有面内应力成分的独立分解数据而运算的前端部(Za)的回弹量是 23.292mm。由于表1所示的各区域的影响量的和是26.44mm,所以根据本 发明,能够确认进行了大致正确的解析。

[表1]

实施例2的分析条件和分析结果

(实施例3:改变了固定点的例子)

在实施例3中,使用与在实施例2中使用的挤压成形品相同形状的、 图9A所示的挤压成形品。在该实施例3中,将实施例2的图8B所示的固 定点的位置如图9B所示那样变更。首先,与实施例1同样,进行对属于各 区域的元素的全部积分点的全部应力成分乘以系数零的运算处理。将这样 得到的分析结果表示在表2中。通过固定点的位置的变更,能够判别是原 本由于形状而看起来翘曲、还是实际翘曲。另外,固定点的变更在运算的 最终阶段中进行,不需要从最初重新运算。

[表2]

实施例3的分析条件和分析结果

(实施例4:对全部面内应力成分乘以系数0.5的例子)

在该实施例4中,对于图8A所示的形状的挤压成形品,基于由原始数 据生成的仅具有面内应力成分的独立分解数据进行了分析。最初,将分析 区域的全部面内应力成分设为零,评价回弹量。在这样评价的情况下,相 对于如表3所示那样、具有的独立分解数据的回弹量是26.76mm,例如将 区域801的全部面内应力成分设为零的情况下的回弹量是26.59。因而,作 为影响度的其差是0.17mm。从区域801到805的各区域的对回弹的影响量 的合计为32.63mm,误差为21.93%。

所以,对于图8A所示的形状的挤压成形品,如表4所示那样,对全部 面内应力成分乘以系数0.5,进行回弹量的评价。在这样评价的情况下,相 对于独立分解数据的回弹量是26.76mm,例如在对区域801的全部面内应 力成分乘以0.5的情况下的回弹量是27.07。这里,影响度为对其差-0.32mm 乘以(1-k)的倒数即1/(1-0.5)=2.0后的值-0.63。同样,计算出的区 域801到805的影响度的量的合计为27.50mm,误差从21.93%减小到了 2.78%。另外,可知区域803和区域804中的面内应力成分是前端部的回弹 量的主要的发生原因。

这样,与将系数设为零相比、设为0.5更能够提高评价精度是因为,实 际上应力与位移的关系不是线性的。即,在应力与位移的关系是线性的情 况下,只要将对某个区域的应力成分乘以的系数设为零而进行运算就可以, 但实际上如图10所示,应力与位移的关系是非线性的。因此,原本的应力 σ0与编辑后的应力σ的梯度不同,如果进行线性近似,则误差变大。对此, 如果将系数设为例如0.5,则能够使编辑后的应力σ的值接近于实际的应力 值。

[表3]

实施例4的分析条件(k=0)和结果

[表4]

实施例4的分析条件(k=0.5)和结果

(实施例5:对全部弯曲力矩应力成分乘以系数0.5的例子)

在该实施例5中,对于图11A所示的挤压成形品前端的绕X轴旋转的 扭转角,分析了弯曲力矩成分(偏差应力成分)的影响。最初,根据原始 数据制作仅具有弯曲力矩成分的独立分解成形数据,如图11B所示,分割 为从区域1101到区域1105的5个区域,评价了各区域的对于全部弯曲力 矩成分的相对扭转角的影响度。另外,实施例5的挤压成形品的绕X轴旋 转的扭转角θ是图11C所示的θ1与θ2的和。这里,作为系数k而使用0。 在这样评价的情况下,如表5所示,独立分解成形数据的回弹量(相对扭 转量)是4.48度。并且,例如将区域1101的力矩成分设为零的情况下的回 弹量是3.75度。对其差0.74度乘以(1-k)的倒数、即1/(1-0)=1后 的值即0.74度是影响度。这样,如果求出从区域1101到区域1105的对相 对扭转角的影响,则合计为4.19度,误差为-6.60%。

所以,如表6所示那样,作为系数k而使用系数0.5进行了评价。在这 样评价的情况下,例如在对区域1101的力矩成分乘以0.5的情况下的回弹 量是4.09度,影响度为将相对于独立分解成形数据的回弹量即4.48度的差 -0.39度乘以(1-k)的倒数即1/(1-0.5)=2.0后的值为-0.78度。同 样求出的、各区域的对扭转角的影响量的合计为4.40度,误差从-6.60% 减小到-1.81%。此外,根据表6的结果可知,区域1103对扭转发生影响 最大。

[表5]

实施例5的分析条件(k=0)和结果

[表6]

实施例5的分析条件(k=0.5)的结果

(实施例6:评价项目的变更例)

在该实施例6中,对于图12A所示的、与实施例2相同形状的挤压成 形品,将前端的2节点(N1点、N2点)的位移的平均值作为评价项目, 基于从原始数据产生的仅具有面内应力成分的独立分解数据进行了分析。 将系数设为k=0,对面内应力成分进行回弹量的运算,评价了图12A所示 的前端的2节点(N1点、N2点)的位移的平均值。另外,图12B表示分 割区域。将运算结果表示在表7中。

[表7]

实施例6的分析条件和分析结果

(实施例7:评价项目的变更例)

在该实施例7中,对于图13A所示的挤压成形品,基于由OLE_LINK1 原始数据生成的仅具有面内应力成分的独立分解数据将OLE_LINK1前端 的2节点(N3点、N4点)的位移的相对位移作为评价项目。将全部面内 应力成分设为零而进行回弹量的运算,评价了图13A所示的前端的2节点 (N3点、N4点)间的相对位移(即,N3与N4的差)。另外,图13B表 示分割区域。将运算结果表示在表8中。

[表8]

实施例7的分析条件和分析结果

(实施例8:评价项目的变更例)

在该实施例8中,关于图14A所示的挤压成形品,基于由原始数据生 成的仅具有力矩应力成分的独立分解数据,对绕X轴旋转的相对位移分析 了弯曲力矩成分(偏差应力成分)的影响。如图14B所示,在挤压成形品 的中央部设定了固定点。并且,如图14C所示,对端部的4点Z1、Z2、Z3、 Z4进行Z轴方向的位移的运算,将Δ=(Z2-Z1)+(Z3-Z4)设为4节 点的绕X轴旋转的相对位移而进行了评价。将其运算结果表示在表9中。 这样,在本发明中,也可以使评价项目产生各种各样变化。

[表9]

实施例8的分析条件和结果

(实施例9:从全局(整体)坐标系向本地(局部)坐标系转换而评价 的例子)

在该实施例9中,对图15A所示的挤压成形品进行了回弹解析。在该 实施例9中,将图16A所示的全局坐标系转换为图17A所示的本地坐标系 而进行评价。另外,图16B是图16A的F-F剖视图,图17B是图17A的 G-G剖视图。基于从原始数据生成的仅具有面内应力成分的独立分解数 据,仅对将坐标系从全局(整体)坐标系变换后的本地(局部)坐标系中 的σy1乘以0.5,其他应力成分保持原样(即,系数k=1)。将图15A所示 的Za部的最大位移作为评价项目。将基于这样得到的运算应力而进行回弹 解析的结果表示在表10中。

[表10]

实施例9的分析条件和结果

工业实用性

根据本发明,能够正确地分析回弹发生原因,能够缩短成形品的成形 方法的研究时间。

标号说明

1:回弹发生原因分析装置

2:成形条件输入部

3:挤压成形解析部

4:分解成形数据生成部

5:区域分割及运算处理部

6:回弹解析部

7:影响度计算部

8:显示部

9:固定条件变更处理部

10:程序

11:CPU

12:存储器

13:显示器

14:输入装置

15:硬盘

16:外部存储装置

17:NIC(网络接口卡)

18:打印机S:文件保存部

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号