首页> 中国专利> 通过提供在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞来改善植物的农业生物学特性的方法

通过提供在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞来改善植物的农业生物学特性的方法

摘要

本发明涉及植物的农业生物学特性的改善。更具体来说,本发明涉及在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞。优选所述植物细胞包括:具有乙醇酸氧化酶活性的第一多肽、具有苹果酸合酶活性的第二多肽和具有过氧化氢酶活性的第三多肽;或者具有乙醇酸脱氢酶活性的第一多肽和具有苹果酸合酶活性的第二多肽。本发明还涉及包含上述植物细胞的植物,以及可从该植物获得的种子。本发明进一步涉及制备具有提高的水利用效率或提高的产量的转基因植物或植物细胞的方法。本发明涉及包含编码上述多肽的核酸的组合的多核苷酸以及包含该多核苷酸的载体,和它们的应用。

著录项

  • 公开/公告号CN102016012A

    专利类型发明专利

  • 公开/公告日2011-04-13

    原文格式PDF

  • 申请/专利权人 科隆大学;

    申请/专利号CN200980113960.6

  • 发明设计人 V·G·莫里诺;U-I·弗卢格;

    申请日2009-02-20

  • 分类号C12N9/04(20060101);C12N9/08(20060101);C12N9/10(20060101);C12N15/82(20060101);C12N5/04(20060101);A01H5/00(20060101);A01H5/10(20060101);

  • 代理机构11247 北京市中咨律师事务所;

  • 代理人黄革生;陈迎春

  • 地址 德国科隆

  • 入库时间 2023-12-18 02:00:44

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-04-06

    未缴年费专利权终止 IPC(主分类):C12N9/04 授权公告日:20130320 终止日期:20150220 申请日:20090220

    专利权的终止

  • 2013-03-20

    授权

    授权

  • 2011-06-01

    实质审查的生效 IPC(主分类):C12N9/04 申请日:20090220

    实质审查的生效

  • 2011-04-13

    公开

    公开

说明书

发明领域

本发明涉及植物的农业生物学特性的改善。具体来说,本发明涉及在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞。优选所述植物细胞包括:具有乙醇酸氧化酶活性的第一多肽、具有苹果酸合酶活性的第二多肽和具有过氧化氢酶活性的第三多肽;或者具有乙醇酸脱氢酶活性的第一多肽和具有苹果酸合酶活性的第二多肽。本发明还涉及包含上述植物细胞的植物,以及可从该植物获得的种子。本发明进一步涉及制备具有提高的水利用效率或提高的产量的转基因植物或植物细胞的方法。本发明涉及包含编码上述多肽的核酸组合的多核苷酸以及包含该多核苷酸的载体,和它们的应用。

背景技术

碳三植物中的光合CO2同化作用被包括温度、CO2和水有效性的环境变量所限制。许多这种限制可归因于核酮糖1,5-二磷酸盐羧化酶/加氧酶(RubisCO)的催化性质。大气中的O2和光系统II产生的O2都与CO2竞争与RubisCO的活性位点的结合。核酮糖1,5-二磷酸(RuBP)的氧合作用仅仅产生一个分子的3-磷酸甘油酯,其余两个碳形成2-磷酸乙醇酸酯。2-磷酸乙醇酸酯是导致CO2损失的C2-氧化光合循环(光呼吸循环)的初始底物[1]。

光呼吸循环的主要功能是再利用2-磷酸乙醇酸酯(图1)。在该通路过程中,两分子的2-磷酸乙醇酸酯被代谢形成一分子的3-磷酸甘油酯和CO2,这些碳化合物立即通过卡尔文-本森循环(Calvin-Benson cycle)(C3-还原型光合循环)用于RuBP的再生,而无磷酸三糖的纯合成[2,3]。

2-磷酸乙醇酸酯在三个不同的细胞区室中代谢,即叶绿体、过氧化物酶体和线粒体(释放CO2和NH4+的位点),涉及许多酶促反应和转运过程(图1)。光呼吸通路依赖于叶中碳和氮代谢的紧密整合,因为NH4+以与CO2相同的速率释放[4]。由于氮是比碳更有价值的资源,光呼吸的NH4+的再同化对于保持碳三植物中氮的状态是必要的[5]。甘氨酸氧化过程中线粒体基质中释放的氨在叶绿体中通过谷氨酰胺合成酶(GS)催化ATP依赖的谷氨酸向谷氨酰胺的转化得到利用。专有地定位于叶肉细胞叶绿体的铁氧还蛋白依赖的谷氨酸合成酶(GOGAT),催化谷氨酰胺和2-酮戊二酸转化成两分子的谷氨酸(图1)。

改善RubisCO羧化活性的一种手段是改变RubisCO对于CO2和O2的动力学常数。但是,迄今为止,通过定点突变降低其加氧酶活性的RubisCO的遗传工程,或者将其用更加有效的形式置换的方法仅取得有限的成功,例如用那些CO2/O2特异性因数高于高等植物RubisCO的CO2/O2特异性因数的来自红藻门(rhodophyte)藻类的RubisCO形式置换的方法[6]。另一种改善碳三植物中碳固定的方法是直接通过对该通路中酶的操纵来降低光呼吸。从插入突变的分析可知,阻断RubisCO氧合作用下游的光呼吸代谢是致死的[7-13]。这些结果表明光呼吸不太可能通过直接操纵光呼吸通路中酶的水平得到改善。另一方面,已发展了几种通过在其反应位点增加CO2实际浓度提高RubisCO羧化酶活性的模式。例子是蓝细菌和藻类[14-15]的CO2浓缩机制或碳四植物的光合循环[16]。后者提供了CO2泵,其在RubisCO位点导致升高的CO2/O2比例,并因此导致相对于羧化酶活性降低的加氧酶活性。在碳三植物中,RubisCO以其Vmax的约25%在体内运行,而在碳四植物中,认为是以其Vmax或接近Vmax运行[16]。并且,RubisCO在碳四植物中的比活性比碳三植物高,因此在碳四植物中需要较少的RubisCO蛋白质来达成高速光合作用。因为此原因,还由于RubisCO是高耗氮量的酶(N-expensive enzyme)这一事实(碳三植物中总叶N的20-30%,但是碳四植物中仅为6%),碳四植物呈现比碳三植物更高的光合氮利用效率[17]。已尝试通过将碳四循环的酶在碳三植物(例如拟南芥(A.thaliana)、马铃薯、烟草和稻)中过表达来转移碳四光合作用的优点,例如高光合容量、快速生长、提高的氮水利用效率[18-21]。等[21]已经表明碳三植物(马铃薯和烟草)中碳四循环基因的过表达导致光呼吸减弱,而且导致内源性酶模式和UV防护剂含量的改变。最近证明了通过用来自大肠杆菌(E.coli)的乙醛酸聚醛酶和丙醇二酸半醛还原酶完成该通路对光呼吸通量的减弱[22]。光呼吸循环不仅仅是由于RubisCO的动力学性质而不可避免地导致的浪费过程。它还被认为是对暴露于高温和干旱的碳三植物的保护机制。要提及的是代谢物的产生,例如甘氨酸、丝氨酸或一碳单元,这些代谢物能从叶输出,或用于其他代谢途径,例如甘氨酸用于谷胱甘肽的合成[23,24]和预防由于消散光能的电子传递链过度还原,特别是当C3植物暴露于高光强度或干旱胁迫下时(光防护;[25,26])。

需要改善植物中CO2的同化,特别是C3植物中CO2的同化,以改善农作物的农业生物学特性。而同时还应该避免上述缺点。

发明概述

因此,本发明要解决的技术问题可以视为提供满足上述需求的手段和方法。权利要求书和下文中描述的本发明实施方式解决了该技术问题。

因此,本发明涉及在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞。

本文中使用的术语“植物细胞”包括来自所有类型植物组织的细胞,即,来自叶、根、茎、脉管组织、花柄、愈伤组织、子叶、花柄、花药、叶柄、种子或胚性植物组织。本发明的宿主细胞可从任何单子叶或双子叶植物获得。优选地,本发明的宿主细胞可以获得自:模式植物,优选拟南芥(Arabidopsis thaliana);或作物植物,选自由油菜(oilseed rape)、月见草(evening primrose)、大麻、大蓟、花生、芸苔、亚麻、大豆、红花、向日葵、琉璃苣、玉蜀黍、小麦、黑麦、燕麦、稻、大麦、棉花、木薯、胡椒、茄科植物,优选马铃薯、烟草、茄子或西红柿;野豌豆属物种,豌豆、紫花苜蓿;灌木植物(咖啡、可可、茶);柳属物种,树(油棕、椰子)和多年生牧草和饲料作物。从上述植物获得宿主细胞的适宜方法以及培养这些细胞的条件是本领域公知的。优选该植物细胞是碳三植物的细胞。

优选地,术语“酶活性”是指通过引入赋予所述活性的一种或多种多肽,即能够将乙醇酸转化为苹果酸、优选以乙醛酸作为中间产物的一种或多种多肽,从而引入叶绿体的酶活性。因此本文中所述的多肽应该是当存在与叶绿体中时呈现上述酶活性的酶。赋予上述转化中必需酶活性的优选多肽在本申请文件的其他部分详细公开。应理解,本文中所指的多肽也可以呈现其他的生物活性。为了保证将上述活性赋予至叶绿体中的上述多肽的定位,优选该多肽包含叶绿体转运肽。适宜的叶绿体转运肽为本领域中已知,记载于Bruce 2000,Trends in Cell Biology 10,440-447或Kleffmann2004,Curr.Biol.14,354-362中。

本发明的植物细胞包括具有内源性核酮糖1,5-二磷酸羧化酶/加氧酶(RubisCO)活性的叶绿体。由于RubisCO的酶性质及其对CO2/O2分压的依赖性,在未修饰的叶绿体中仅仅可以进行有限的CO2固定。但是,本发明的植物细胞中所包含的叶绿体是经过工程化的,这种工程化是通过将能够转化乙醇酸为乙醛酸、随后将乙醛酸转化为苹果酸的酶活性引入叶绿体,以允许将叶绿体中的乙醇酸转化为苹果酸。通过向叶绿体中引入这些酶活性,建立了完整的乙醇酸分解代谢循环。作为此循环的结果,一分子乙醇酸转化为两分子的CO2并还原NADPH和NADH形式的能量(乙醇酸+O2+NAD+NADP→2CO2+NADH+NADPH+2H++H2O)。以这种方式,CO2直接在叶绿体中释放,从而提高了CO2分压。因此降低了RubisCO的加氧酶活性,并由此形成了自调节循环。为此,优选上述植物细胞进一步包括NADP-苹果酸酶和丙酮酸脱氢酶。因此,优选本发明的植物细胞具有比缺乏转化乙醇酸为苹果酸酶活性的植物细胞增加的CO2同化效率。

作为大大提高的CO2同化作用的有利结果,本发明的植物细胞可以产生产量提高、水利用效率改善的植物,特别是农作物植物,其在本申请文件其他部分更详细公开。通过向叶绿体中引入上述酶活性并由此引入完整的乙醇酸分解代谢循环,CO2将在叶绿体中直接释放并再固定,从而通过提高CO2/O2比例降低RubisCO的加氧酶活性(图1)。

在本发明的植物细胞的优选实施方式中,植物细胞的叶绿体包含具有乙醇酸氧化酶活性的第一多肽、具有苹果酸合酶活性的第二多肽和具有过氧化氢酶活性的第三多肽。

本文所称乙醇酸氧化酶应能够转化乙醇酸为乙醛酸和水过氧化氢(E.C.1.1.3.15)。苹果酸合酶应能够通过从乙酰-CoA向乙醛酸引入两个C单元来合成苹果酸(E.C.4.1.3.2)。过氧化氢酶是指能够将水过氧化氢转化为水和氧气的酶(E.C.1.11.1.6)。能够实施这些转化和合成的任何酶都可以引入到本发明的叶绿体中。上述酶活性可以用本领域公知的测定方法测定,优选用下列实施例中描述的测定方法。

然而,优选上述第一多肽由包含选自下组的核酸的第一多核苷酸编码:

a.具有SEQ ID No:1中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:2中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:1中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸氧化酶活性的多肽;和

d.编码具有与SEQ ID No:2中所示氨基酸序列至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸氧化酶活性。

优选所述第二多肽由包含选自下组的核酸的第二多核苷酸编码:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示核苷酸序列至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列的多肽的核酸,其中所述多肽具有苹果酸合酶活性。

优选第三多肽由包含选自下组的核酸的第三多核苷酸编码:

a.具有SEQ ID No:5中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:6中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:5中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有过氧化氢酶活性的多肽;和

d.编码具有与SEQ ID No:6中所示氨基酸序列有至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有过氧化氢酶活性。

此处使用的术语“多核苷酸”是指线性或环状的核酸分子。其包括DNA和RNA分子。优选本发明的多核苷酸应作为分离的多核苷酸(即从其天然环境中分离)或以遗传修饰的形式提供。该术语包括单链和双链多核苷酸。并且,还包括化学修饰的多核苷酸,其包括:天然产生的修饰多核苷酸,如糖基化或甲基化的多核苷酸;或人工修饰的多核苷酸,例如生物素化的多核苷酸。本发明的多核苷酸特征在于其应编码上述多肽。优选该多肽具有如上所述的特定核苷酸序列。此外,由于遗传密码的简并性,还包括编码如上所述的特定氨基酸序列的多核苷酸。

此外,本发明中使用的术语“多核苷酸”进一步包括上述特定多核苷酸的变体。所述变体可包括本发明多核苷酸的直向同源物、旁系同源物或其他同源物。优选该多核苷酸变体包括特征在于其序列能够通过至少一个核苷酸取代、插入和/或缺失而从上述特定核酸序列衍生得到的核酸序列,从而该变体核酸序列应仍旧编码具有上述活性的多肽。变体还包括包含能够与上述特定核酸序列杂交、优选在严紧杂交条件下杂交的核酸序列之多核苷酸。这些严紧条件为本领域技术人员所公知,可在Current Protocols inMolecular Biology,John Wiley & Sons,N.Y.(1989),6.3.1-6.3.6中找到。严紧杂交条件的优选实例为:6×氯化钠/柠檬酸钠(=SSC),大约45℃杂交,接着在50-65℃下、0.2×SSC,0.1%SDS条件下进行一步或多部洗涤步骤。本领域技术人员了解关于温度和缓冲液的浓度条件,这些杂交条件根据核酸的类型而不同,而且例如,当有机溶剂存在时。例如,在“标准杂交条件”下,在浓度为0.1-5×SSC(pH7.2)的水性缓冲液中,根据核酸类型温度在42℃和58℃之间改变。如果上述缓冲液中存在有机溶剂,例如50%甲酰胺,则标准条件的温度为约42℃。DNA:DNA杂交的杂交条件优选为例如0.1×SSC,20℃-45℃,优选30℃至45℃之间。DNA:RNA杂交的杂交条件优选为例如0.1×SSC,30℃至55℃,优选45℃至55℃之间。上述杂交温度在例如不存在甲酰胺的情况下为长度约100bp(=碱基对)、G+C含量为50%的核酸而测定。技术人员了解如何参考如上所述或下列教科书决定所需的杂交条件:Sambrook等,《分子克隆》,冷泉港实验室,1989;Hames和Higgins编辑,1985年,《核酸杂交:一种实用方法(Nucleic Acids Hybridization:A Practical Approach)》,牛津大学出版社,IRL出版社,牛津;Brown编辑,1991,《基础分子生物学:一种实用方法(Essential Molecular Biology:A Practical Approach)》,牛津大学出版社,IRL出版社,牛津。或者,可用PCR类技术得到多核苷酸变体,例如基于混合寡核苷酸引物的DNA扩增,即,用针对本发明多肽的保守结构域的简并引物进行的扩增。本发明多肽的保守结构域可通过将本发明多核苷酸的核酸序列或本发明多肽的氨基酸序列与本发明所涉及酶家族的其他成员的序列进行序列比对来鉴定。适于作为PCR引物的寡核苷酸和适宜的PCR条件记载于下列实施例中。可使用来自细菌、真菌、植物或动物的DNA或cDNA作为模板。并且,变体包括含有与特定核酸序列至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%相同的核酸序列的多核苷酸。并且,变体还包括含有编码与本文涉及的特定氨基酸序列至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%相同的氨基酸序列的核酸序列的多核苷酸。同一性百分比值优选对整个氨基酸或核酸序列区域计算。为了比对不同的序列,本领域技术人员可得到基于多种算法的一系列程序。在此背景下,Needleman和Wunsch的算法或Smith和Waterman的算法能得到特别可靠的结果。为了进行序列比对,使用了美国53711威斯康辛州麦迪逊575 Science Drive的遗传性计算机集团1991版本(Genetics Computer Group,575 Science Drive,Madison,Wisconsin,USA53711,version 1991)的GCG软件包中的一部分,即PileUp程序(Higgins1989,CABIOS,51989:151-153)或Gap和BestFit程序(Needleman 1970,J.Mol.Biol.48;443-453和Smith 198,Adv.Appl.Math.2;482-489)。上文中以百分数(%)表示的序列同一性值优选用GAP程序对整个序列区域以下列设置进行测定:间隙权重(Gap Weight):50,字长权重(LengthWeight):3,平均匹配:10.000和平均错配:0.000,除非另外说明,这些设置总是用作序列比对的标准设置。

包含任意上述核酸序列片段的多核苷酸也作为本发明的多核苷酸被包括。该片段应编码仍然具有上述活性的多肽。所以,该多肽可包括赋予上述生物活性的本发明多肽的结构域或由这些结构域组成。本文所述片段优选包括上述任一个核酸序列的至少50、至少100、至少250或至少500个连续核苷酸,或编码包括任一个上述氨基酸序列的至少20、至少30、至少50、至少80、至少100或至少150个连续氨基酸的氨基酸序列。

本发明的多核苷酸或者基本由上述核酸序列组成,或者包括上述核酸序列。所以,它们还可以包含另外的核酸序列。具体而言,本发明的多核苷酸可编码融合蛋白,其中融合蛋白的一部分是上述核酸序列编码的多肽。这样的融合蛋白可包括:用以监测表达(例如绿色、黄色、蓝色或红色荧光蛋白、碱性磷酸酶等)的附加部分肽序列;或用作可检测标记或用作纯化目的的辅助手段的所谓的标签。用于不同目的的标签为本领域所公知,包括FLAG标签、6-组氨酸标签、MYC标签等。

更优选上述第一、第二和/或第三多肽由异源多核苷酸表达,即,从已经例如用表达载体瞬时引入植物细胞的多核苷酸表达,或从已经例如用T-或P-DNA插入而稳定引入植物细胞的多核苷酸表达。此处使用的术语“异源的”是指不是在植物细胞中天然发生的多核苷酸。因此该术语包括源自不同有机体的修饰或未修饰的多核苷酸,或者源自本发明植物细胞的修饰的多核苷酸。应理解,该异源多核苷酸应该或者包括允许其在植物细胞中表达的表达控制序列,或者包括允许异源多核苷酸在植物细胞基因组中的基因座整合的序列,从而使该异源多核苷酸的表达可由植物细胞的内源性表达控制序列所掌控。优选该异源多核苷酸包括具有上述第一、第二或第三多核苷酸的核酸序列中的两个或全部三个核酸的核酸,即,编码乙醇酸氧化酶的多核苷酸、编码苹果酸合酶的多核苷酸或编码过氧化氢酶的多核苷酸。通过引入上述异源多核苷酸,生成转基因植物细胞。这样的转基因植物细胞可通过转化技术得到,这些技术在引用的下列文献中公开:《植物分子生物学和生物技术(Plant Molecular Biology and Biotechnology)》(CRC出版社,Boca Raton,佛罗里达),6/7章,第71-119页(1993);学术出版社,Kung和R.Wu编辑,1993年《转基因植物》第一卷,《工程和应用》15-38页,F.F.White的“高等植物中基因转移用载体”(Vectors forGene Transfer in Higher Plants;in:Transgenic Plants,vol.1,Engineeringand Utilization,Ed.:Kung and R.Wu,Academic Press,1993,15-38);学术出版社,Kung和R.Wu编辑,1993年《转基因植物》第一卷,《工程和应用》中128-143页,B.Jenes等的“基因转移的技术”(B.Jenes et al.,Techniques for Gene Transfer,in:Transgenic Plants,vol.1,Engineeringand Utilization,Ed.:Kung and R.Wu,Academic Press(1993),128-143);Potrykus,Annu.Rev.Plant Physiol.Plant Molec.Biol.42(1991),205-225。优选转基因植物可以通过T-DNA介导或P-DNA介导的转化得到。通常这样的载体系统特征在于其至少包含土壤杆菌介导的转化所需的vir基因和为T-DNA或P-DNA划界的序列(T-DNA边界或P-DNA边界)。适宜载体详细记载于申请文件的其他部分中。

在本发明植物细胞的另一个优选实施方式中,叶绿体包括具有乙醇酸脱氢酶活性的第一多肽和具有苹果酸合酶活性的第二多肽。

本文中使用的乙醇酸脱氢酶(EC 1.1.99.14)是指能够转化乙醇酸至乙醛酸但是使用NAD+而不是H2O2作为氧化剂的酶。

优选所述第一多肽由包含选自下组的核酸的第一多核苷酸编码:

a.具有SEQ ID No:7中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:8中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:7中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸脱氢酶活性的多肽;和

d.编码具有与SEQ ID No:8中所示氨基酸序列有至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸脱氢酶活性。

优选上述第二多肽由包含选自下组的核酸的第二多核苷酸编码:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示的核苷酸序列具有至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列的多肽的核酸,其中所述多肽具有苹果酸合酶活性。

如上文中所设定,所述第一和/或第二多肽优选从异源多核苷酸表达。在此情况下,优选该异源多核苷酸或者包括具有上述第一或第二多核苷酸的核酸序列(即,编码乙醇酸脱氢酶的多核苷酸或编码苹果酸合酶的多核苷酸)的核酸,或包括这两种核酸。

本发明还涉及包含本发明的植物细胞的植物。

优选本发明的植物从本发明的植物细胞发育得到。所以,可设想该植物的所有植物细胞都是根据该发明的植物细胞,即,在其叶绿体中包括转化乙醇酸至苹果酸的酶活性。如上所述,本发明的植物细胞,优选本发明的植物,选自下组中:模式植物,优选拟南芥;或作物植物,优选油菜、月见草、大麻、大蓟、花生、芸苔、亚麻、大豆、红花、向日葵、琉璃苣、玉蜀黍、小麦、黑麦、燕麦、稻、大麦、棉花、木薯、胡椒;茄科植物,优选马铃薯、烟草、茄子或西红柿;野豌豆属物种,豌豆、紫花苜蓿;灌木植物(咖啡、可可、茶);柳属物种,树(油棕、椰子)和多年生牧草和饲料作物。优选本发明的植物是C3植物。

优选地,与缺乏本发明植物细胞的植物相比,本发明的植物具有提高的CO2同化作用。此处使用的CO2同化作用是指CO2和水在光合作用过程中转化为有机分子。该背景下的化学反应为本领域所公知,并记载在标准生化教科书中。CO2同化作用的提高可以用本领域公知的测定方法测定,优选由下列实施例中描述的测定方法测定。优选该提高在统计学上有显著意义。提高是否在统计学上有显著意义可以用公知的统计检验测定,包括例如student氏t检验、曼-怀二氏检验(Mann-Whitney test)等。更优选该提高是指同化的CO2提高至少10%、至少20%、至少30%、至少40%或至少50%。优选地,本文中缺乏本发明植物细胞的植物是指与本发明的植物相同品种的未修饰的对照植物。

与缺乏本发明植物细胞的植物相比,还优选本发明的植物具有减弱的光呼吸作用。光呼吸通路活性的减弱可以用公知技术测定。优选适宜的测试方法公开于所附下列实施例中。此处所述“减弱”优选是指统计学上有显著意义的减弱。

与缺乏本发明的植物细胞的植物相比,优选本发明的植物具有提高的水利用效率。作为升高的CO2同化作用的结果,由于叶的气孔可保持关闭,所以提高了水利用率。因此,减少了蒸发造成的水损失。水利用率的提高可以用本领域公知的测定方法测定,优选由下列实施例中描述的测定方法测定。优选该提高在统计学上有显著意义。更优选该提高是指提高至少10%、至少20%、至少30%、至少40%或至少50%。

与缺乏本发明的植物细胞的植物相比,优选本发明的植物生产的叶数量增加。叶的数量可以计数得到或基于叶的鲜重或干重来测定。优选叶的数量增加在统计学上有显著意义。更优选该增加是指叶数量增加至少10%、至少20%、至少30%、至少40%或至少50%。

此外,与缺乏本发明的植物细胞的植物相比,优选本发明的植物具有提高的产量。本文中使用的术语“产量”包括植物部分或完整植物的生物量(鲜重或干重)的增加,特别是植物的可收获部分的生物量的增加。生物量的增加可以是地上的或地下的。地下生物量的增加可由于诸如块茎、根茎、球茎等植物部分生物量的增加。特别优选任意一种或多种下列增加:增加的根生物量、增加的根体积、增加的根数量、增加的根直径和增加的根长度。术语“增加的产量”还包括种子产量的增加。种子产量的增加包括:(i)增加的总种子产量,包括种子生物量(种子重量)增加,可以是每棵植物种子重量的增加或者单个种子重量的增加;(ii)每花序中花(“小花(florets)”)的数量增加;(iii)饱满种子数量的增加;(iv)种子大小增加;(v)种子体积增加;(vi)单个种子面积增加;(vii)单个种子长度和/或宽度增加;(viii)收获指数增加,其表达为收获部分(如种子)产量与总生物量的比例;(ix)饱满率增加,饱满率是指饱满种子的数量除以种子总数再乘以100;和(x)千粒重(TKW)增加,从所计数的饱满种子数量及其总重量推知。提高的TKW可得自提高的种子大小和/或种子重量。提高的TKW可由提高的胚大小和/或胚乳大小产生。优选该产量增加在统计学上有显著意义。更优选该提高是指产量提高至少10%、至少20%、至少30%、至少40%或至少50%。

最后,因为该工程化的路径定位于叶绿体,可直接再固定CO2,并释放更少的氨。因此,在本发明的植物中需要较低程度的氨再同化,而且还会发生硝酸盐利用率的改善。

本发明进一步包括可从本发明的植物得到的种子。优选本发明的种子应能够产生(即发育为)本发明的植物,尤其是具有上述特征的植物。

本发明的植物或植物细胞优选是转基因植物或植物细胞。所以,本发明涉及生产转基因植物或植物细胞的方法,该转基因植物或植物细胞与相应的非转基因植物或植物细胞相比具有升高的水利用率,所述方法包括向该转基因植物或植物细胞叶绿体中引入如上所述的具有乙醇酸氧化酶活性的第一多肽、具有苹果酸合酶活性的第二多肽和具有过氧化氢酶活性的第三多肽,或引入如上所述的具有乙醇酸脱氢酶活性的第一多肽和具有苹果酸合酶活性的第二多肽。

上述多肽的引入优选通过引入编码上述多肽的异源多核苷酸来达成,在本申请文件其他部分将更详细讨论。这包括表达载体的瞬时引入,或通过例如T-DNA或P-DNA插入来稳定整合到植物细胞基因组中。应理解,可引入包括编码所有上述多肽的核酸的异源多核苷酸。或者,可引入各包括编码上述多肽中的一个多肽的核酸的分离的独立的异源多核苷酸。因此,该方法优选包括如下步骤:

a.向该植物的植物细胞中引入至少一个编码所述多肽的异源多核苷酸;和

b.从所述至少一个多核苷酸表达所述多肽。

本发明还涉及生产转基因植物或植物细胞的方法,该转基因植物或植物细胞与相应的非转基因植物或植物细胞相比具有升高的产量,所述方法包括向该转基因植物或植物细胞叶绿体中引入如上所述的具有乙醇酸氧化酶活性的第一多肽、具有苹果酸合酶活性的第二多肽和具有过氧化氢酶活性的第三多肽,或引入如上所述的具有乙醇酸脱氢酶活性的第一多肽和具有苹果酸合酶活性的第二多肽。该方法优选还包括如下步骤:

a.向该植物的植物细胞中引入至少一个编码所述多肽的异源多核苷酸;和

b.从所述至少一个多核苷酸表达所述多肽。

本发明包括包含下列核酸的组合的多核苷酸:

选自下列核酸构成的组的核酸:

a.具有SEQ ID No:1中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:2中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:1中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸氧化酶活性的多肽;和

d.编码具有与SEQ ID No:2中所示氨基酸序列至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸氧化酶活性;

选自下列核酸构成的组的核酸:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示的核苷酸序列具有至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列的多肽的核酸,其中所述多肽具有苹果酸合酶活性;和

选自下列核酸构成的组的核酸:

a.具有SEQ ID No:5中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:6中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:5中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有过氧化氢酶活性的多肽;和

d.编码具有与SEQ ID No:6中所示氨基酸序列有至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有过氧化氢酶活性。

此外,本发明还涉及包含下列核酸组合的多核苷酸:

选自下列核酸构成的组的核酸:

a.具有SEQ ID No:7中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:8中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:7中所示核苷酸序列有至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸脱氢酶活性的多肽;和

d.编码具有与SEQ ID No:8中所示氨基酸序列有至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸脱氢酶活性;和

选自下列核酸构成的组的核酸:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示的核苷酸序列具有至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列的多肽的核酸,其中所述多肽具有苹果酸合酶活性。

通过向植物细胞或植物中引入作为异源多核苷酸的本发明的任一个上述多核苷酸,本发明涉及的特征将被赋予所述植物或植物细胞。

本发明还涉及包含一种本发明的上述多核苷酸的载体。

术语“载体”优选包括噬菌体、质粒、病毒载体或逆转录病毒载体以及人工染色体,例如细菌或酵母菌人工染色体。此外,该术语还涉及靶向构建体,允许该靶向构建体向基因组DNA中的随机或定点整合。这样的靶向构建体优选包括如下详述的用于同源重组或异源重组的足够长度的DNA。优选包括本发明多核苷酸的载体进一步包括用于在宿主中扩增和/或选择的选择性标记。该载体可通过本领域公知的多种技术整合入宿主细胞中。如果引入宿主细胞中,该载体可存在于细胞质中或整合入基因组中。在后者情况下,应理解该载体可进一步包括允许同源重组或异源插入的核酸序列。可通过常规转化或转染技术将载体引入到原核或真核细胞中。本文中使用的术语“转化”和“转染”,接合(conjugation)和转导,旨在包括引入外来核酸(例如DNA)至宿主细胞中的大量现有技术方法,包括:磷酸钙、氯化铷或氯化钙共沉淀;DEAE-葡聚糖介导的转染;脂转染;天然感受态;碳类簇(carbon-based clusters);化学修饰的转移;电穿孔或粒子轰击(例如“基因枪”)。包括植物细胞的宿主细胞的适宜转化或转染方法可在Sambrook等(《分子克隆:实验室手册》第二版,冷泉港实验室,冷泉港出版社,纽约冷泉港,1989)和其他实验室手册,例如《分子生物学方法》1995,第44卷,土壤杆菌实验方案,Gartland和Davey编辑,Humana出版社,新泽西州Totowa中找到。或者,可通过热休克或电穿孔技术引入质粒载体。该载体如果是病毒,则应该在应用到宿主细胞上之前,先用适宜的包装细胞株在体外包装。逆转录病毒载体可以是可复制的或复制缺陷的。在后者情况下,通常仅仅在互补宿主细胞中发生病毒增殖。

优选此处涉及的载体适用于作为克隆载体,即在微生物系统中可复制。这样的载体保证了细菌中的有效克隆,优选酵母菌或真菌中的有效克隆,并使植物可以稳定转化。必须提及的特别是那些适用于T-DNA介导或P-DNA介导的转化的多种双元和共整合载体系统。通常这样的载体系统特征在于其至少包含土壤杆菌介导的转化所需的vir基因和为T-DNA或P-DNA划界的序列(T-DNA或P-DNA边界)。这些载体系统优选还进一步包括顺式调节区域,例如启动子和终止子和/或选择性标记,这些选择性标记适用于鉴别合适转化的宿主细胞或有机体。共整合载体系统在同一载体中排列有vir基因和T-DNA序列时,而二元系统基于至少两个载体,一个携带vir基因而没有T-DNA,而另一个携带T-DNA、没有vir基因。结果,最后提到的这种载体相对较小,容易操作,而且能够在E.coli和土壤杆菌中复制。这些二元载体包括源自pBIB-HYG、pCAMBIA、pPZP、pBecks、pGreen系列的载体。优选用于本发明的是pGreen II。二元载体的综述及其应用参见Hellens 2000,Trends in Plant Science 5,446-451。此外,利用合适的克隆载体,本发明的多核苷酸可引入宿主细胞或有机体内,例如植物或动物中,并由此可用于植物的转化,例如下列文献中公开和引用的:Plant Molecular Biology and Biotechnology(CRC Press,Boca Raton,Florida),6/7章,第71-119页(1993);F.F.White,Vectors for Gene Transferin Higher Plants;in:Transgenic Plants,卷1,Engineering and Utilization,Kung和R.Wu编著,Academic Press,1993,15-38;B.Jenes等人,Techniques for Gene Transfer,出自Transgenic Plants,卷1,Engineeringand Utilization,Kung和R.Wu编著,Academic Press(1993),128-143;Potrykus,Annu.Rev.Plant Physiol.Plant Molec.Biol.42(1991),205-225。

更优选本发明的载体是表达载体。在这样的表达载体中,该多核苷酸包括如上所述的允许在真核细胞中表达的表达框或其分离的片段。除了本发明的多核苷酸,表达载体还可进一步包括调节元件,包括转录和翻译增强子。优选,该表达载体还是基因转移或靶向载体。源于病毒的表达载体如逆转录病毒载体、痘苗病毒、腺相关病毒、疱疹病毒或牛乳头瘤病毒,可用于将本发明的多核苷酸或载体传递入靶向的细胞群中。可采用本领域技术人员公知的方法构建重组病毒载体,参见,例如Sambrook,MolecularCloning A Laboratory Manual,Cold Spring Harbor Laboratory(1989)N.Y.和Ausubel,Current Protocols in Molecular Biology,Green Publishing Associatesand Wiley Interscience,N.Y.(1994)中记载的技术。

适用的表达载体骨架优选源自本领域已知的表达载体,例如Okayama-Berg cDNA表达载体pcDV1(Pharmacia)、pCDM8、pRc/CMV、pcDNA1、pcDNA3(Invitrogene)或pSPORT1(GIBCO BRL)。典型融合表达载体的其他实例有pGEX(Pharmacia Biotech Inc;Smith,D.B.,和Johnson,K.S.(1988)Gene 67:31-40)、pMAL(New England Biolabs,Beverly,MA)和pRIT5(Pharmacia,Piscataway,NJ),其中分别与编码要表达的蛋白质的目的核酸融合了谷胱甘肽S-转移酶(GST)、麦芽糖E-结合蛋白和蛋白质A。pTrc载体的靶基因表达基于宿主RNA聚合酶从杂合子trp-lac融合启动子开始的转录。pET 11d载体的靶基因表达基于由共表达的病毒RNA聚合酶(T7gn1)介导的T7-gn10-lac融合启动子的转录。该病毒聚合酶由宿主菌株BL21(DE3)或HMS174(DE3)从固有的λ-噬菌体提供,该噬菌体携带lacUV 5启动子转录控制下的T7gn1基因。在酿酒酵母中表达的载体实例包括:pYeDesaturasec1(Baldari等人(1987)Embo J.6:229-234)、pMFa(Kurjan和Herskowitz(1982)Cell 30:933-943)、pJRY88(Schultz等人(1987)Gene 54:113-123)和pYES2(Invitrogen Corporation,San Diego,CA)。适用于例如丝状真菌的其他真菌的载体及其构建方法包括详细记载于下列文献中的方法:van den Hondel,C.A.M.J.J.,&Punt,P.J.(1991)“Gene transfer systems and vector development for filamentousfungi,出自Applied Molecular Genetics of fungi,J.F.Peberdy等编辑,第1-28页,剑桥大学出版社:剑桥,或出自More Gene Manipulations in Fungi(J.W.Bennett & L.L.Lasure编著,第396-428页:学术出版社(AcademicPress):圣地亚哥)。其他适用的酵母载体例如pAG-1、YEp6、YEp13或pEMBLYe23。作为备选,本发明的多核苷酸还可以用杆状病毒表达载体在昆虫细胞中表达。可用于在培养的昆虫细胞(例如Sf9细胞)中表达蛋白的杆状病毒表达载体包括pAc系列(Smith等人(1983)Mol.Cell Biol.3:2156-2165)和pVL系列(Lucklow和Summers(1989)Virology170:31-39)。

允许在植物细胞中表达的表达载体包括详细记载于下列文献中的载体:Becker,D.,Kemper,E.,Schell,J.,和Masterson,R.(1992)“New plantbinary vectors with selectable markers located proximal to the left border”,Plant Mol.Biol.20:1195-1197和Bevan,M.W.(1984)“BinaryAgrobacterium vectors for plant transformation”,Nucl.Acids Res.12:8711-8721;Vectors for Gene Transfer in Higher Plants;出自Transgenic Plants,卷1,Engineering and Utilization,Kung和R.Wu编著,Academic Press,1993,第15-38页中。植物表达框优选包括:能够控制植物细胞中基因表达和功能性连接以使得各个序列能够实现其功能的调节序列,例如转录终止序列,例如多腺苷酸化信号。优选的多腺苷酸化信号源自根瘤土壤杆菌T-DNA的,例如Ti质粒pTiACH5的基因3,已知其是章鱼碱合酶(Gielen等人,EMBO J.3(1984)835以及下列等等),或其功能等同物,但是所有在植物中具有功能活性的其他终止序列也适用。由于植物基因表达经常不限于转录水平,植物表达框优选包括其他功能性连接的序列,例如翻译增强子,如过驱动序列(overdrive sequence),包括5’未翻译烟草花叶病毒前导序列,其提高蛋白质/RNA比例(Gallie等人,1987,Nucl.Acids Research 15:8693-8711)。用于植物基因表达框中功能性连接的其他优选序列是将基因产物靶向至其相关的细胞区域所需要的靶向序列。在当前情况下,具体而言,所相关的细胞区域是叶绿体。

本发明还涉及一种组合物,该组合物包括:

包括选自下列核酸的第一多核苷酸:

a.具有SEQ ID No:1中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:2中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:1中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸氧化酶活性的多肽;和

d.编码具有与SEQ ID No:2中所示氨基酸序列至少50%相同的氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸氧化酶活性;

包括选自下列核酸构成的组的核酸的第二多核苷酸:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示的核苷酸序列具有至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列多肽的核酸,其中所述多肽具有苹果酸合酶活性;和

包括选自下列核酸构成的组的核酸的第三多核苷酸:

a.具有SEQ ID No:5中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:6中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:5中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有过氧化氢酶活性的多肽;和

d.编码具有与SEQ ID No:6中所示氨基酸序列有至少50%相同氨基酸序列的多肽的核酸,其中所述多肽具有过氧化氢酶活性。

此外,本发明涉及一种组合物,该组合物包括:

包括选自下列核酸构成的组的核酸的第一多核苷酸:

a.具有SEQ ID No:7中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:8中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:7中所示核苷酸序列至少50%相同的核苷酸序列的核酸,其中所述核酸编码具有乙醇酸脱氢酶活性的多肽;和

d.编码具有与SEQ ID No:8中所示氨基酸序列有至少50%相同氨基酸序列的多肽的核酸,其中所述多肽具有乙醇酸脱氢酶活性;和

包括选自下列核酸构成的组的核酸的第二多核苷酸:

a.具有SEQ ID No:3中所示核苷酸序列的核酸;

b.编码具有SEQ ID No:4中所示氨基酸序列的多肽的核酸;

c.具有与SEQ ID No:3中所示的核苷酸序列具有至少40%相同的核苷酸序列的核酸,其中所述核酸编码具有苹果酸合酶活性的多肽;和

d.编码具有与SEQ ID No:4中所示氨基酸序列至少40%相同的氨基酸序列的多肽的核酸,其中所述多肽具有苹果酸合酶活性。

如本申请文件其他部分所述,这样的组合物包括用于赋予需要改善本文所述特征的植物或植物细胞所述酶活性的异源多核苷酸。

应理解上述本发明的多核苷酸、载体或组合物,优选用于赋予植物或植物细胞提高的水利用率或赋予植物或植物细胞提高的产量。

附图概述

图1:C3植物的光呼吸碳氮循环(黑色)被新型乙醇酸分解代谢通路(红色)短路。引入拟南芥叶绿体中的转基因酶为绿色高亮表示。Kat:过氧化氢酶;GDC:甘氨酸脱羧酶;GGAT:谷氨酸-乙醛酸氨基转移酶;GK:甘油酸激酶;GO:乙醇酸氧化酶;GOGAT:谷氨酸-酮戊二酸氨基转移酶;GS:谷氨酰胺合成酶;HPR:羟基丙酮酸还原酶;MDH:NAD-苹果酸脱氢酶;ME:NADP-苹果酸酶;MS:苹果酸合酶;PDH:丙酮酸脱氢酶;PGP:磷酸乙醇酸磷酸酶;SGAT:丝氨酸-谷氨酸氨基转移酶;SHMT:丝氨酸羟甲基转移酶。与参考文献[3]对应。

图2:转基因植物和野生型植物的叶提取物中的酶活性。A)乙醇酸氧化酶活性。B)苹果酸合酶活性。C)过氧化氢酶活性。误差棒表示三次不同测定值的标准误。

图3:6周龄植物在短日照条件下在环境CO2浓度(380ppm)和高CO2浓度(2,000ppm)下生长的生长特性。

图4:淀粉在6周龄转基因植物和野生型植物叶子中积聚的差异,这些植物在短日照下在下列(A-C)条件下生长:A)380ppm;B)2000ppm;C)在光照期将植物转移至600μmol量子m-2s-1六天。D)如C)中处理的植物的表型。

发明详述

下列实施例仅仅用来说明本发明。但是不应将其理解为对本发明保护范围的限制。

实施例

实施例1:转基因的PCR扩增

用Platinum Pfx DNA聚合酶(Invitrogen,Karlsruhe,德国)扩增对应于拟南芥叶的乙醇酸氧化酶2(GO,At3g14420)和南瓜子叶的苹果酸合酶(MS,X56948)的cDNA和E.coli过氧化氢酶(KatE;M55161)的基因组序列,并克隆到pGEMT-Easy(Promega,Mannheim,德国)或pCR-Blunt II-TOPO(Invitrogen)中。对于GO和MS的情况,省略编码最后的氨基酸(A/SRL)的核苷酸,估计这些氨基酸代表过氧化物酶体导向信号(31,32)。使用下列引物组合:GO正向引物:(5′-TACAATTGGAGATCACTAACGTTACCGAGT-3′SEQ ID NO:9)和GO反向引物:(5′-TGGGACACTCCACGTCCTTAGTCTAGACTAGTA-3′SEQ ID NO:10);MS正向引物:(5′-ACACCGGTCGCTGGGAATGTATTCTGAATCGGCA-3′SEQ ID NO:11)和MS反向引物:(5′-CACATAGGCATACATCATCCCAGGTGAGTCGACGTT-3′SEQID NO:12);KatE正向引物:(5′-ACACCGGTCGCAACATAACGAAAAGAACCCA-3′SEQ ID NO:13)和KatE反向引物:(5′-ACGTCGACTCAGGCAGGAATTTTGTCAATCT-3`SEQ ID NO:14)。为了进行所述克隆策略,将引物设定为在GO的5′和3′端引入唯一的MunI和SpeI位点,在MS和KatE的5′和3′端引入AgeI和SalI位点。为了将GO靶向引入叶绿体中,使用下列引物用PCR扩增拟南芥葡糖磷酸变位酶的间质靶向导肽(PGM;225bp)。PGM正向引物:(5′-TAGGTACCCAATCAACAATGACGTCGACCTAC-3′SEQ ID NO:15);和PGM反向引物:(5′-GAGATTAAATCGTTGCCGACGAAGCAATTGTA-3′SEQ ID NO:16)。该寡核苷酸设计为在5′和3′端引入唯一的KpnI和MunI位点。得到的片段克隆到GOcDNA的上游。为了将MS和KatE靶向至叶绿体,含西红柿-RubisCO-小亚基(rbcS3C;X66072)启动子(715bp)和转运肽(172bp)的片段用基因组DNA和下列引物PCR扩增:rbcS3C正向引物:(5′-ACGAGCTCATCCAGAATTGGCGTTGGATTA-3′SEQ ID NO:17);和rbcS3C反向引物:(5′-AGCAACGGTGGAAGAGTCAGTTGCAACCGGTAT-3′SEQ ID NO:18)。该引物设计为在5′和3′端引入唯一的SacI和AgeI位点。得到的片段插入到MS和KatE编码区的上游。用PRISM荧光染料-终止系统(Applied Biosystems,Darmstadt,德国)对所有的质粒构建体测序,以排除聚合酶反应中形成的任何可能的突变。

实施例2:二元载体的构建

为了指导在拟南芥中的表达,将编码这些酶的质体前体的DNA克隆到修饰形式的二元载体pGreenII中[33,34]。用不同的策略将编码这些酶的DNA克隆到二元载体中。对于MS和KatE,从载体中切除CaMV35S启动子,并用西红柿-rbcS3C启动子指导表达。选择性标记基因nosKan(卡那霉素抗性)、nosHyg(潮霉素抗性)和nosBAR 18(BASTA抗性)被克隆到基本pGreenII载体中的StuI-位点。将GO克隆到pGreenII 35S-nosKan载体中,MS克隆到pGreenII rbcS3C-nosHyg载体中,KatE克隆到pGreenII rbcS3C-nosBAR载体中,得到的质粒称为35S:GO、rbcS3C:MS和rbcS3C:KatE。

实施例3:拟南芥的转化和转化体的选择

将二元载体35S:GO、rbcS3C:MS和rbcS3C:KatE电穿孔入携带辅助质粒pSoup的根瘤土壤杆菌GV3101中,用于通过真空侵入转化拟南芥植物(哥伦比亚生态型,Col-0)[35]。利用对卡那霉素、潮霉素或BASTA的抗性选择转化的种子。从选出的植物中收集叶材料,抽提DNA用于PCR分析。含有转基因的植物能够自花传粉。转基因系再进行两轮筛选和表征,利用PCR和酶活性检测。

一般植物生长在8小时光照/16小时黑暗的条件下,光合活性光子通量密度(PPFD)为100或600μmol量子m-2s-1(分别是正常和提高的光强度),并把温度调节到白天22℃/晚上18℃。对于非光呼吸条件下的生长,将在正常条件下生长的三周龄植物转移入CO2浓度2,000±200ppm的室中。

实施例4:GO-MS和GMK转化物的生产

用载体rbcS3C:MS转化GO(5系,GO5)生产GO-MS系。含有三个基因的细胞系GMK系通过用载体rbcS3C:KatE再转化GO-MS(系6,GO-MS6)来制备。在所有情况下,利用转基因的不同抗性选择细胞系,并用PCR、Southern印迹和酶活性测定来确认。

实施例5:叶绿体分离、抽提物制备和酶活性测定

如Kebeish等[22]所述分离完整的叶绿体。将沉淀的叶绿体重悬在相应的抽提缓冲液(见下文)中,直接用于酶活性测定。乙醇酸氧化酶:在N2存在下匀浆叶材料,并重悬在抽提缓冲液中,抽提缓冲液中含有100mMHepes,pH7.2,1mM EDTA和10mM的2-巯基乙醇。离心匀浆物使其澄清,取10μl等份小样用于酶活性测定。酶活性测定按照Yamaguchi和Nishimura[36]的方法进行,并进行下列改变:反应介质含有100mM三乙醇胺,pH7.8,3mM EDTA,0.75mM氧化型谷胱甘肽和4mM苯肼。加入2.3mM乙醇酸钠开始反应,然后在320nm进行分光光度测定。一个酶单位定义为每分钟催化产生1μmol乙醛酸-苯腙的酶量,以324nm处16.8mM-1cm-1的苯腙的消光系数计算。苹果酸合酶:在N2存在下匀浆叶材料,并重悬在抽提缓冲液中,抽提缓冲液中含有50mM Tris-HCl,pH8.0,和1mM MgCl2。离心20匀浆物使其澄清,取10μl等份小样用于酶活性测定。按照Smith等[37]记载的方法测定MS活性。反应介质中含有50mMTris-HCl,pH 8.0,5mM MgCl2,3mM乙酰-CoA,1,6mM 5,5`-二硫代双2-硝基苯甲酸(DTNB)。加入4mM乙醛酸开始反应,然后在410nm、25℃进行分光光度测定。一个酶单位定义为每分钟催化产生1μmol 4-硝基硫醇的酶量,以410nm处13.7M-1cm-1的4-硝基硫醇的消光系数计算。过氧化氢酶:在N2存在下匀浆叶材料,并重悬在抽提缓冲液中,抽提缓冲液中含有50mM KH2PO4,pH7.0,1%(v/v)聚乙烯吡咯烷酮(PVP)-40和0.1%(v/v)Triton X-100。如Havir和McHale[38]所述在50mM KH2PO4、pH 7.0中测定过氧化氢酶活性。加入10mM H2O2开始反应,然后在240nm、25℃进行分光光度测定。一个酶单位定义为每分钟催化分解1μmol H2O2的酶量,以240nm处43.6M-1cm-1的H2O2的消光系数计算。

实施例6:H2O2和乙醛酸含量的测定

过氧化氢:用Okuda等[39]记载的实验方案的修改版测定H2O2含量。在N2和500μl的0.2M HClO4存在下匀浆叶(50-100mg),并在4℃、20,000g离心5分钟。用4N KOH中和300μl上清液至pH7.5以去除HClO4,将溶液在4℃、1,000g离心1分钟。取200μl上清上样到1.2ml AG-1柱上(0.8cm×4cm;BioRad,Hercules,USA),用800μl双蒸水洗涤柱两次。含有H2O2的第二次洗脱液用于检测。反应混合物在750μl总体积中含有500μl洗脱液、200μl对二甲基氨基苯甲醛(dimethylaminobenzalsehyde,DMAB,12.5mM,溶于0.375M、pH6.5的磷酸盐缓冲液中)、40μl 3-甲基-2-苯并噻唑啉酮腙(3-methyl-2-benzothiazolinone hydrazone,MBTH,0.05%w/v)和10μl过氧化物酶(12.5U/ml)。加入过氧化物酶起始反应,25℃、8分钟孵育之后,监测590nm的吸光度升高。乙醛酸:乙醛酸的测定用等[40]记载的实验方案的修改版进行。在N2和500μl 100mM HCl以及0.1%苯肼存在下匀浆叶材料(30-100mg),并将其在80℃孵育5分钟。冰上冷却之后,将样品在10,000g离心2分钟,200μl上清与750μl的18.5%HCl和50μl的4%(w/v)K3Fe(CN)6混合。10,000g离心混合物2分钟,在加入K3Fe(CN)6后8分钟的精确时间点,测定上清在520nm处的吸光度。不加K3Fe(CN)6的样品作为对照。

实施例7:代谢产物含量

按照Fahnenstich等[33]记载的方法进行GC-MS分析、碳水化合物和叶绿素含量测定。

实施例8:叶绿素荧光参数

用PAM-2000脉冲调幅叶绿素荧光计(Walz GmbH,Effeltrich,德国)进行叶绿素荧光测定。每次测量起始时,将植物暗适应10分钟。用调制弱红光测量基楚荧光(F0),用饱和白光脉冲(5000μmol m-2sec-1;持续0.8s).诱导最大荧光(Fm)。

实施例9:CO2同化率和碳同位素分析

按照Awada等的方法(41)对植物进行光合率测量,这些植物在如下条件下生长:8小时光照/16小时黑暗,光合活性光子通量密度(PPFD)为100和300μmol量子m-2s-1(分别为正常和升高的光强度),环境相对湿度水平,24℃。简言之,用安装有LED光源和为拟南芥叶订制的叶室的便携光合系统(LI 6400-2B,LICOR Inc.,Lincoln,NE,美国)在光饱和下进行最大净光合(A,μmol m-2s-1)。按照Madhavan等的方法[42]进行碳同位素比例测定。在60℃干燥整个莲座丛(rosette)48小时,并研磨成精细粉末,以测定碳同位素比例。用连接了自动捕获盒系统和Finnigan Delta-S同位素比率质谱仪的元素分析仪(Heraeus,CHN-O Rapid)分析该叶粉末的子样本(2-3mg)的碳同位素比例。通过与之前用已知δ13C值相对于PDB(Pee Dee Belemnite国际标准)标定的工作标准比较,确定各个样本的同位素比例。

实施例10:乙醇酸氧化酶、苹果酸合酶和过氧化氢酶在拟南芥叶绿体中的共表达

用编码乙醇酸氧化酶(GO)的质粒转化拟南芥。对GO活性高于野生型(19-53%)而且仅仅含有一个GO转基因插入的卡那霉素抗性转基因系再进行两轮筛选,得到非分离T3转基因系。用编码苹果酸合酶(MS)的质粒转化GO活性比野生型高30%的GO代表系(图2)。选择潮霉素抗性的GO-MS转化物,并分析其MS活性。得到的所有转基因系都显示出相似的MS活性(9.8±2.2至17.9±0.5mU/mg蛋白),把用Southern印迹证明仅仅携带一个MS转基因插入的代表系(图2)再进行两轮筛选,得到非分离T3群。用编码E.coli过氧化氢酶(KatE)的质粒转化该双纯合子过表达系,用BASTA抗性选出11个独立的系(GMK系)。含有高于野生型的过氧化氢酶活性的GMK系再进行两轮筛选,得到非分离T3系。选择GMK3和GMK9作为得到的两个不同群的代表进行进一步的分析(参见下文;图2)。Southern印迹分析表明GMK3系仅仅含有一个KatE转基因插入,而GMK9含有三个插入(未示出)。GMK植物呈现类似于亲本系GO和GO-MS的GO和MS活性(图2),表明在9代之后没有转基因表达的损失。为了排除单转基因表达引起的任何表型改变,还在野生型背景中表达了MS和KatE。在两种情况下,得到了具有与GMK系相似的MS或过氧化氢酶活性的系(代表系包括在图2中)。用五周龄GMK3植物和野生型植物的叶中分离的叶绿体进行的酶活性测量表明,转基因酶正确定位到质体中(未示出)。

实施例11:转基因GMK植物积聚更多的生物量

纯合子GO植物具有在第一个7周的生长中莲座丛直径和鲜重降低、以及叶子微黄的特征(图3)。有趣的是,从第7周开始,与野生型的生长差异变得不那么显著了(未示出)。乙醛酸和过氧化氢含量的测定表明二者在GO植物中都有提高(图S1)。GO-MS系与GO相似但大小介于GO和野生型植物之间(图3)。由于当暴露于胁迫条件(见下文)时GO-MS植物呈现GO表型,在GO-MS植物的质体中表达KatE基因,以促进对GO活性产生的过量H2O2的解毒作用。呈现所有三种转基因活性的独立系表现出生物量的统计学显著的增加(例如GMK3),而其他则大于亲本GO-MS植物但仍然小于野生型(例如GMK9)。如表1所示,与野生型比较,GMK3植物表现出增大的莲座丛直径和更多叶子数量,以及增加了35-40%的干重。当所有的系生长在非光呼吸条件(CO2浓度为2000ppm)下时,观察到可忽略的表型差异(图3和表1)。很明显,对RubisCO的加氧酶反应的抑制导致叶绿体内乙醇酸产量降低,并因此导致乙醛酸和H2O2水平降低。值得注意的是,单独MS和KatE过表达的系在所有测试条件下的表现都与野生型类似(未示出)。然后我们评价了转化体在光照阶段末段积聚光合终产物的能力。用GC-MS测定蔗糖和单糖葡萄糖和果糖。在环境CO2且没有胁迫的情况下,GO-MS植物积聚较少的蔗糖,而GMK系表现出与野生型相当的水平。虽然GO-MS植物中葡萄糖和果糖的积聚与野生型相比没有差异,但是GMK系的葡萄糖和果糖水平高于野生型的水平。在暴露于高度光照六小时后,GO-MS植物的所有这些代谢物都降低,而GMK系积聚了这些光同化产物(表2)。同样,在正常光照条件下,GO-MS转化体积聚了更少的过渡淀粉(也见于其亲本GO系中),而GMK植物恢复了与野生型一样的积聚淀粉的能力(图4A)。当在高CO2浓度下生长时,在所有系中观察到相似的高水平淀粉积聚。(图4B)。有趣的是,当这些系在正常条件下生长,然后转移到高度光照条件下7天时,GMK3植物象野生型一样积聚淀粉,而GO、GO-MS和GMK9转基因系则丧失了这种能力(图4D)。与这些结果一致,GO、GO-MS和GMK9系对高度光照处理表现出强烈的变黄和氧化损伤(图4D)。

实施例12:GMK植物增强的CO2同化作用和降低的光呼吸

为了评价转基因植物的光合性能,在不同的基因型中测定了叶绿素荧光、气体交换和对13C的辨别力(碳同位素比例,δ13C)。与野生型相比,GO植物的电子传递率(ETR)减少了约25%,而GO-MS和GMK9植物的电子传递率则与野生型类似(表3)。在GMK3植物中,其ETR比野生型增强了26%(表3)。FV/FM比例表明,在正常条件下生长的7周龄GO-MS和GMK植物的光系统II的最大量子效率没有受到影响,而GO植物表现出轻微的不良影响(表3)。值得一提的是,较幼龄的GO植物总是呈现比其他系更低的FV/FM比例,这一事实与第一周生长过程中这些植物的更显见表型的相关性良好(未示出)。另一方面,当植物暴露于高度光照六小时时,没有观察到GMK系与野生型FV/FM比例的差异,而在GO和GO-MS植物中观察到强烈的光抑制(未示出)。用LICOR便携光合作用仪对对照和表达整个通路的转化体进行瞬时光合率测定(A,μmol m-2s-1)。表3表明,GMK3系的光合率相对高于野生型,而GMK9的光合率与野生型相当。为了测定是否GMK3植物比其亲本系具有更高的光合效率,进行了碳同位素分离研究。碳同位素比例测定提供了对植物在其整个生存期进行光合功能的整体观察。如表3所示,当植物在正常条件下生长时,δ13C对GMK3系的负面影响小于其对野生型的负面影响(GMK1系也得到了相似的结果),这表明在这些植物中提高了羧基化效率和水利用率。不出所料,当植物在非光呼吸条件(2,000ppm CO2,表3)下生长时,所有系的δ13C表现出无差异的趋势。用GC-MS测定甘氨酸和丝氨酸水平,计算Gly/Ser比例作为整个光呼吸通路的通量的指标。在环境CO2浓度下,以及在正常或高度光照条件下,GMK系表现出比野生型低的甘氨酸含量(表3)。GO-MS植物在正常光照条件下的甘氨酸含量不变,但是在高度光照条件下表现出降低的甘氨酸水平(表3)。对于丝氨酸,在两种测试光强度下,GMK植物都表现出比野生型低的水平,而GO-MS植物在正常光照下呈现野生型水平,在高度光照下呈现提高的丝氨酸水平(表3)。在正常光照条件下,所有系的Gly/Ser比例都相当,但是在高度光照六小时以后,转基因系测得比野生型显著更低的比例(表3)。在此光呼吸条件下孵育植物之后,由于甘氨酸的高度积聚,与正常光照条件相比,野生型的Gly/Ser比例提高了约150倍(表3)。对于GO-MS、GMK3和GMK9,仅仅分别提高了33、13和63倍(表3)。在这些植物中,GMK3植物由于其甘氨酸积聚很低,所以表现出最低的Gly/Ser比例。当在高CO2浓度下生长时,在这些系中没有观察到Gly/Ser比例的差别(表3)。

表1:8周龄转基因和野生型系的生长参数在短日照条件下,环境CO2浓度(A,380ppm)或高CO2浓度(E,2,000ppm)中生长的植物的莲座丛直径(RD)、叶子数量(NL)和干重(DW)。表中列出的值为每次至少8个植株,重复两次的平均值±标准误。粗体字表示的值是指Student氏检验计算的与野生型的值有显著性差异(P<0.05)。

说明书中未明确指出的参考文献参见下列参考文献列表:

参考文献

1.Tolbert NE(1997)The C2 oxidative photosynthetic carbon cycle.Annu.Rev.Plant Physiol.Plant Mol.Biol.48:1-25。

2.Douce R and Neuburger M(1999)Biochemical dissection ofphotorespiration.Curr.Opin.Plant Biol.2:214-222。

3.Wingler A,Lea PJ,Quick WP,Leegood RC(2000)Photorespiration:metabolic pathways and their role in stress protection.Phil.Trans.R.Soc.Lond B 255:1517-1529。

4.Keys AJ,Bird IF,Cornelius MJ,Lea PJ,Wallsgrove RM,Miflin BJ(1978)Photorespiratory nitrogen cycle.Nature 275:741-743。

5.Leegood RC,Lea PJ,Adcok MD,RE(1995)The regulationand control of photorespiration.J.Exp.Bot.46:1397-1414。

6.Parry M,Andralojc PC,Mitchell RAC,Madgwick P,Keys A(2003)Manipulation of RubisCO:the amount,activity,function and regulation.J.Exp.Bot.54:132-1333。

7.Somerville CR,Ogren WL(1980)Photorespiration mutants ofArabidopsis thaliana deficient in serine-glycolate aminotransferase activity.Proc.Natl.Acad.Sci.USA 77:2684-2687。

8.Somerville CR,Ogren WL(1980)Inhibition of photosynthesis inArabidopsis mutants lacking leaf glutamate synthase activity.Nature 286:257-259。

9.Somerville CR,Ogren WL(1981)Photorespiration-deficientmutants of Arabidopsis thaliana lacking mitochondrial serinetranshydroxymethylase activity.Plant Physiol.67:666-671。

10.Somerville CR,Ogren WL(1982)Mutants of the cruciferous plantArabidopsis thaliana lacking glycine decarboxylase activity.Biochem.J.202:373-380.25。

11.Sommerville S,Somerville CR(1985)Mutant of Arabidopsisthaliana deficient in chloroplast dicarboxylate transport is  missing anenvelope protein.Plant Sci.Lett.37:217-220。

12.Bauwe H.and Kolukisaoglu U.(2003)Genetic manipulation ofglycine decarboxylation.J Exp.Bot.54:1523-1535。

13.Bold R,Edher C,Kolukisaoglu U,Hagemann M,Weckwerth W,etal.(2005)DGlycerate 3-kinase the last unknown enzyme in thephotorespiratory cycle in Arabidopsis,belongs to a hovel kinase family.Plant Cell 17:2413-2420。

14.Bagder MR,Price GD(2003)CO2 concentrating mechanisms incyanobacteria:molecular components,their diversity and evolution.J.Exp.Bot.54:609-622.15.Giordano M,Beardall J,Raven JA(2005)CO2concentrating mechanisms in algae:mechanisms,environmentalmodulation and evolution.Ann.Rev.Plant Biol.56,99-131。

16.Hatch MD(1987)C4 photosynthesis:A unique bend of modifiedbiochemistry,abatomy and ultrastructure.Biochim.Biophys.Acta 895:8-16。

17.Sage RF,Pearcy RW,Seemann JR(1987)The nitrogen useefficiency of C3 and C4 plants.Plant Physiol.85:355-359。

18.Ishimaru K,Ichikawa H,Matsuoka M,Oshugi R(1997)Analysisof a C4 pyruvate,orthophosphate dikinase expressed in C3 transgenicArabidopsis plants.Plant Sci.129:57-64。

19.Ishimaru K,Ohkawa Y,Ishige T,Tobias DJ,Oshugi R(1998)Elevated pyruvate orthophosphate dikinase(PPDK)activity alters carbonmetabolism in C3-transgenic potatoes with a C4 maize PPDK gene.Physiol.Plant.103:340-346。

20.Matsuoka M,Furbank RT,Fukayama H,Miyao M(2001)Molecular engineering of C4 photosynthesis.Ann.Rev.Plant Physiol.Plant Mol.Biol.52:297-314。

21.RE,Rademacher T,Li J,Lipka V,Fischer KL,et al.(2001)Single and double overexpression of C4-cycle genes had differential effectson the pattern of endogenous enzymes,attenuation of photorespiration andon contents of UV protectants in transgenic potato and tobacco plants.J.Exp.Bot.52:1785-1803。

22.Kebeish R,Niessen N,Thiruveedhi K,Bari R,Hirsch J-H,et al.(2007)Chloroplastic photorespiratory bypass increases photosynthesis andbiomass production in Arabidopsis thaliana.Nature Biotech.25:593-599。

23.Keys AJ(1999)Biochemistry of photorespiration and theconsequences for plant performance.In Plant Carbohydrate Biochemistry(eds.JA Bryant,MM Burell,NJ Kruger),pp.147-162.Oxford:BIOSScientific Publishers。

24.Noctor G,Arisi A-CM,Jouanin L,Foyer CH(1999)Photorespiratory glycine enhances glutathione accumulation in both thechloroplastic and cytosolic compartments.J.Exp.Bot.50:1157-1167。

25.Heber U,Bligny R,Streb P,Douce R(1996)Photorespiration isessential for protection of the photosynthetic apparatus of C3-plantsagainst photoinactivation under sunlight.Bot.Acta.109:307-315。

26.Kozaki A,Takeba G(1996)Photorespiration protects C3-plantsfrom photooxidation.Nature 384,557-560。

27.Farquhar GD,Ehleringer JR,Hubick KT(1989)Carbon isotopediscrimination and photosynthesis.Ann.Rev.Plant Physiol.40:503-537。

28.Gillon JS,Griffiths H(1997)The influence of(photo)respirationon carbon isotope discrimination in plants.Plant Cell Environ.20:1217-1230。

29.Igamberdiev AU,Mikkelsen T,Ambus P,Bauwe H,Lea P,et al.(2004)Photorespiration contributes to stomatal regulation and carbonisotope fractionation:a study with barley,potato and Arabidopsis plantdeficient in glycine decarboxylase.Photos Res.81:139-152。

30.yon Cammerer S(2003)C4 photosynthesis in a single cell istheoretically inefficient but may ameliorate internal CO2 diffusionlimitations of C3 leaves.Plant Cell Environm.26:1191-1197。

31.Horng J-T,Behari R,Burke C-A,Baker A(1995)Investigation ofthe Energy Requirement and Targeting Signal for the Import of GlycolateOxidase into Glyoxysomes.Eur.J.Biochem.230:157-163。

32.Mori H,Takeda-Yoshikawa Y,Hara-Nishimura I,Nishimura M(1991)Pnmpkin malate synthase Cloning and sequencing of the cDNA andNorthern blot analysis.Eur.J.Biochem.197:331-336。

33.Fahnenstich H,Saigo M,Niessen M,Zanor MI,et al.(2007)Alteration of organic acid metabolism in Arabidopsis thalianaoverexpressing the maize C4-NADP-malic enzyme causes acceleratedsenescence during extended darkness.Plant Physiol.145:640-652。

34.Hellens RP,Edwards EA,Leyland NR,Bean S,Mullineaux PM(2000)pGreen:a versatile and flexible binary Ti vector forAgrobacterium-mediated plant transformation.Plant Mol.Biol.42:819-832。

35.Bechtold,N,Ellis J and Pelletier,G(1993)In plantaAgrobacterium-mediated gene transfer by infiltration of adult Arabidopsisthaliana plants.C R Acad Sci Paris,Life Sci.316:1194-1199。

36.Yamaguchi K and Nishimura M(2000)reduction to belowthreshold levels of glycolate oxidase activities in transgenic tobaccoenhances photoinhibition during irradiation.Plant Cell Physiol.41:1397-1406。

37.Smith CV,Huang C-C,Miczak A,Russell DG,Sacchettini JC,et al.(2003)Biochemical and Structural Studies of Malate Synthase fromMycobacterium tuberculosis.J.Biol.Chem.278:1735-1743。

38.Havir E,McHale N(1987)Biochemical and developmentalcharacterization of multiple forms of catalase in tobacco leaves.PlantPhysiol.84:450-455。

39.Okuda T,Matsuda Y,Yamanaska A,Sagisaka S(1991)Abruptincrease in the level of hydrogen peroxide in leaves of winter wheat iscaused by cold treatment.Plant Physiol.97:1265-1267。

40.RE,Bailey KJ,Lea PJ,Leegood RC(1996)Control ofphotosynthesis in barley mutants with reduced activities of glutaminesynthetase and glutamate synthase.Planta 200:388-396。

41.Awada T,Dunigan DD,Dickman MB(2004)Animal anti-apoptoticgenes enhance recovery from drought stress in tobacco.Int.J.Agri & Biol.6:943-949。

42.Madhavan S,Treichel I,O′Leary MH(1991)Effects of relativehumidity on carbon isotope fractionation in plants.Bot.Acta 104:292-294。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号