首页> 中国专利> 复合载药微球、盐酸米诺环素纳米缓释复合载药微球体系及其制备方法

复合载药微球、盐酸米诺环素纳米缓释复合载药微球体系及其制备方法

摘要

本发明涉及一种复合载药微球、盐酸米诺环素纳米缓释复合载药微球体系及其制备方法。在聚乳酸-羟基乙酸聚合物微球内部包埋了盐酸米诺环素,外面包覆了一种由聚乙二醇修饰的O-羧甲基壳聚糖十八烷基季铵盐、O-羧甲基壳聚糖十八烷基季铵盐和胆固醇制备而成的阳离子高分子脂质体,形成一种核壳结构载药体系;包载盐酸米诺环素后的复合载药微球体系粒径在340nm~400nm之间,表面Zeta电位为正。可在水溶液中保存至少2个月;包封率高,载药能力强,制备的复合载药体系对药物的包封率大于90%,载药率载高达9%;本发明涉及的盐酸米诺环素纳米缓释复合载药体系具有粒径均匀可控,制剂稳定性好,制备工艺简单,载药率高,具有优良缓释功能等特点,适合大批量生产。

著录项

  • 公开/公告号CN101836961A

    专利类型发明专利

  • 公开/公告日2010-09-22

    原文格式PDF

  • 申请/专利权人 天津大学;

    申请/专利号CN201010154084.6

  • 申请日2010-04-23

  • 分类号A61K9/16(20060101);A61K47/34(20060101);A61K47/36(20060101);A61K31/65(20060101);A61P31/04(20060101);

  • 代理机构12201 天津市北洋有限责任专利代理事务所;

  • 代理人王丽

  • 地址 300072 天津市南开区卫津路92号天津大学

  • 入库时间 2023-12-18 00:44:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-06-11

    未缴年费专利权终止 IPC(主分类):A61K9/16 授权公告日:20120530 终止日期:20130423 申请日:20100423

    专利权的终止

  • 2012-05-30

    授权

    授权

  • 2010-11-10

    实质审查的生效 IPC(主分类):A61K9/16 申请日:20100423

    实质审查的生效

  • 2010-09-22

    公开

    公开

说明书

技术领域

本发明涉及一种新型复合载药微球、盐酸米诺环素纳米缓释复合载药微球体系及其制备方法,属于药物技术领域。

背景技术

羧甲基壳聚糖是一种水溶性的壳聚糖衍生物,其分子中含有带负电荷的羧基和带正电荷的氨基,是一种两性聚合物;壳聚糖季铵盐由于具有优良的粘膜渗透性、高的Zeta电位及可作为基因载体而备受研究者的青睐,而使用二甲基十八烷基环氧丙基氯化铵对羧甲基壳聚糖进行季铵化处理制备羧甲基壳聚糖季铵盐,将赋予壳聚糖季铵盐更佳的抑菌性能。同时,在羧甲基壳聚糖上引入长链烷基季铵盐可使水溶性壳聚糖具有更好的亲脂性,从而扩大羧甲基壳聚糖的使用范围。O-羧甲基壳聚糖十八烷基季铵盐(OQCMC)在水溶液和有机溶剂中均具有很好的溶解性,水溶液具有很低的表面张力,因此OQCMC是一种优良的乳化剂;OQCMC分子含有-NH2和-COO-等多官能团,因此又赋予其较高的反应活性,容易进行表面改性。

聚乳酸-羟基乙酸共聚物(PLGA)是由乳酸和羟基乙酸无规聚合而成,是一种可降解的功能高分子有机化合物,具有良好的生物相容性、无毒、良好的成囊和成膜的性能,被广泛应用于制药、医用工程材料和现代化工业领域。由于它们具有安全可靠、良好的生物相容性和可控的生物降解性能等多种特性,因此已在药物控制释放和手术吻合修复方面显示了重要和广阔的应用前景。

PLGA作为控释微球药物载体的优势:

1)无毒无公害,在生物体内可以被降解,对生物体不会造成伤害;

2)降解周期长,延长药物体内循环时间,增加药物的缓释效果;

3)提高给药的生物利用度;

4)良好的生物相容性,最终分解为二氧化碳和水;

5)降低药物毒性和刺激性。

但是PLGA作为药物载体,存在一定的缺陷:

1)亲水性较差;

2)PLGA端链含有羧基,带有负电性,因而增加了载体本身的细胞毒性。

以传统的卵磷脂、胆固醇(Chol)制备的常规脂质体,包覆在PLGA载药微球的外表面,形成复合载药体系,在一定程度上中和了PLGA的负电性,增加了其亲水性,但同时带来了粒径显著增大,载药率下降的缺陷。

发明内容

本发明的目的在于提供一种具有良好的缓控释功能,包封率高,稳定性好,粒径小,毒副作用小,亲水性好的复合载药微球及制备方法。

本发明的另一个目的在提供盐酸米诺环素的复合载药微球及制备方法。

一种复合载药微球,是在聚乳酸-羟基乙酸聚合物微球外面包覆了一种由聚乙二醇修饰的0-羧甲基壳聚糖十八烷基季铵盐(PEG-OQCMC)、OQCMC和Chol制备而成的阳离子高分子脂质体,形成一种核壳结构,表面Zeta电位为正。从透射图片上分析,发现其粒径均匀,分散性好,很少有熔合,团聚的现象,如附图1所示。

复合载药微球的制备方法,步骤如下:

1)将PEG-OQCMC,OQCMC和Chol溶于二氯甲烷中,将该混合物置于茄形瓶中,在32~40℃于旋转蒸发仪上以45~55r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护,当茄形瓶中的有机溶剂完全挥发后,继续旋蒸30~50min,从而制的阳离子高分子脂质体;

2)将PLGA微球分散在蒸馏水中,取下步骤1中的茄形瓶,加入上述的PLGA微球和蒸馏水,然后继续在32~40℃下以45~55r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得复合载药微球;

其中:原料的质量份数配比如下:

PEG-OQCMC∶OQCMC=1~2∶2~1;

PEG-OQCMC与OQCMC总份数∶Chol=2~4∶1;

制备的阳离子高分子脂质体∶PLGA微球=1~2∶1。

本发明的复合载药微球,可以应用到许多载药体系,采用本发明体系,研究制备了包载盐酸米诺环素复合载药微球体系,但并不限定为一种药物,像米托蒽醌,长春新碱,阿霉素,紫杉醇等抗肿瘤药物等都可以采用本发明的复合载药微球体系作为载体,实现对机体的治疗。

一种盐酸米诺环素复合载药微球,是在聚乳酸-羟基乙酸聚合物微球内部包埋了盐酸米诺环素,外面包覆了一种由PEG-OQCMC,OQCMC和Chol制成的阳离子高分子脂质体,形成一种核壳结构。

盐酸米诺环素复合载药微球制备方法,步骤如下:

1)将聚乳酸-羟基乙酸嵌段聚合物(PLA-b-PGA 50/50)置于烧瓶中,加入蒸馏水,用超声波细胞粉碎机进行超声,向烧瓶中加入盐酸米诺环素的甲醇溶液,继续超声,当烧瓶内液体均匀后停止;

2)将烧瓶中超声后的溶液倒入盛有聚乙烯醇(PVA)溶液的烧杯中,继续超声,当形成均匀的泛有乳光的液体时即可停止,从而制的包载盐酸米诺环素的PLGA微球;

3)采用磁力搅拌器搅拌24小时,用蒸馏水清洗微球,至少三次,然后将上述制备的载药微球真空冻干即可;

4)将PEG-OQCMC,OQCMC和Chol溶于二氯甲烷中,将该混合物置于茄形瓶中,在32~40℃下于旋转蒸发仪上以45~55r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护,当茄形瓶中的有机溶剂完全挥发后,继续旋蒸30~50min,从而制得阳离子高分子脂质体;

5)将步骤3制备的包载盐酸米诺环素的PLGA微球分散在蒸馏水中,取下步骤4中的茄形瓶,加入上述的PLGA微球和蒸馏水,然后继续在32~40℃下以45~55r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得包载盐酸米诺环素复合载药微球;

其中:原料的质量份数配比如下:

PLA-b-PGA(50/50)∶PVA=1∶1~2

PLA-b-PGA、PVA总份数∶盐酸米诺环素=1~2∶1

PEG-OQCMC∶OQCMC=1~2∶2~1;

PEG-OQCMC、OQCMC总份数∶Chol=2~4∶1;

阳离子高分子脂质体∶包载盐酸米诺环素的PLGA微球=1~2∶1。

包载盐酸米诺环素后的复合载药微球体系粒径在340nm~400nm之间,如附图2所示。表面Zeta电位为正,如附图3所示。其对盐酸米诺环素的载药率高达9%。具有优良的药物缓控释功能,如附图4所示。

所述的OQCMC按照常津等提供的专利方法(申请(专利)号:200710056993.4)进行制备。本发明中采用PEG对OQCMC进行修饰,得到PEG-OQCMC,用于制备阳离子高分子脂质体。

本发明的有益效果:

整个制备过程简单快捷,制备周期短,产率高。所制备的盐酸米诺环素纳米缓释复合载药微球体系的性能包括:粒径大小在340~400nm之间,多分散指数可达为0.145,粒径均匀,且可以根据制剂的组成成分,实验条件等进行调节;表面Zeta电位为正,使复合载药体系毒性进一步降低;稳定好,可在水溶液中保存至少2个月;包封率高,载药能力强,制备的复合载药体系对药物的包封率大于90%,载药率载高达9%;缓释性能明显,制备的盐酸米诺环素制剂相对于传统制剂而言具有明显的缓释效果。

总之,与现有的盐酸米诺环素制剂相比,本发明涉及的盐酸米诺环素纳米缓释复合载药体系具有粒径均匀可控,制剂稳定性好,制备工艺简单,载药率高,具有优良缓释功能等特点,适合大批量生产。

本发明所提供的脂质体(薄膜分散法聚合方法)主要质量指标见下表:

  具体指标  盐酸米诺环  素/PLGA体系  盐酸米诺环素  /PLGA/常规脂质  体体系  盐酸米诺环素/PLGA/阳  离子高分子脂质体体系  (实施例4所制样品)  粒径  300nm  1056nm  340.1nm  包封率  85%  70%  94%  Zeta电位  -30.5mv  -32.82mv  28.80mv  载药率  9%  7%  9%

本发明采用PEG-OQCMC,OQCMC替代磷脂(如卵磷脂),通过脂质体制备技术,成功制备了表面带正电并同时含有氨基和羧基等官能团的新型阳离子高分子脂质体,这种体系制备方法简单,药物包封率高,稳定性好,粒径小,毒副作用小,缓控释效果明显。将这种脂质体包覆在PLGA微球外表面来制备复合载药微球体系,不仅使PLGA,阳离子高分子脂质体的优点得以保持,还增加了体系的亲水性,降低了毒性,同时粒径没有发生突增,载药率提高,亲水性增强,稳定性提高。脂质体作为稳定剂,其表面的正电荷与PLGA表面负电荷部分中和,不仅降低了载体的细胞毒性,而且通过改变PLGA纳米粒的表面电荷分布情况,使粒子因空间相斥作用而以单个形式存在,防止粒子聚集产生沉淀,同时防止了蛋白的表面吸附,并改变纳米粒的体内降解及体内分布,从而使得复合载药微球更为稳定。脂质体可作为PLGA纳米粒子的表面修饰材料改善了微粒的表面亲水性,调整载药微粒的释药行为,可提高药物控释能力。

盐酸米诺环素是半合成四环素类抗生素抗菌药物,其抗菌活性较强,抑菌浓度为1-5ug/ml时,能够抑制85%和98%的牙周袋内的细菌,同时具有抑制胶原酶活性、促进牙周膜细胞增殖等作用,对治疗牙周病有良好的疗效。本发明采用PEG-OQCMC,OQCMC与Chol来制备脂质体,将其包覆在PLGA微球表面形成复合载药体系,并将该体系用于包载盐酸米诺环素,形成缓释制剂。该种制剂可以进入到牙周袋深处,同时达到了缓慢释放药物的目的,有利于减轻病人的负担。

说明书附图

图1:纳米缓释复合载药微球体系透射照片。

图2:包载盐酸米诺环素的纳米缓释复合载药微球体系粒度分析图。

图3:包载盐酸米诺环素的纳米缓释复合载药微球体系Zeta电位分析图。

图4:三种包载盐酸米诺环素的载药体系体外累计释放曲线对比图。

具体实施方式

以下通过实施例对本发明作进一步的阐述。

实施例1

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶2

PEG-OQCMC∶OQCMC=1∶2

PEG-OQCMC、OQCMC总份数∶Chol=2∶1

阳离子高分子脂质体∶PLGA微球=1∶1

(1)将5ml浓度为40mg/ml的PVA溶液倒入烧杯中,用超声波细胞粉碎机进行超声,功率为200W,加入5ml浓度为20mg/ml的PLA-b-PGA溶液,继续超声,当形成均匀的泛有乳光的液体时即可停止,从而制的PLGA微球。磁力搅拌24小时后,蒸馏水清洗至少三次后,真空冻干即可。

(2)称取10mgPEG-OQCMC,20mgOQCMC,15mgChol,溶于4ml二氯甲烷中。将该混合物置于茄形瓶中,在35℃于旋转蒸发仪上以50r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸30min。

(3)称取45mg如步骤(1)所制PLGA微球,分散在4.5ml的蒸馏水中,将步骤(2)茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在35℃下以50r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得复合载药微球。在透射照片下观察,其粒径均匀,分散性好,无团聚和熔合现象发生,见附图1。

实施例2

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶1

PEG-OQCMC∶OQCMC=1∶1

PEG-OQCMC、OQCMC总份数∶Chol=4∶1

阳离子高分子脂质体∶PLGA微球=2∶1

(1)将5ml浓度为20mg/ml的PVA溶液倒入烧杯中,用超声波细胞粉碎机进行超声,功率为110W,加入5ml浓度为20mg/ml的PLA-b-PGA溶液,继续超声,当形成均匀的泛有乳光的液体时即可停止,从而制的PLGA微球。磁力搅拌24小时后,蒸馏水清洗至少三次后,真空冻干即可。

(2)称取20mgPEG-OQCMC,20mgOQCMC,10mgCho l,溶于4ml二氯甲烷中。将该混合物置于茄形瓶中,在40℃于旋转蒸发仪上以45r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸40min。

(3)称取25mg如步骤(1)所制PLGA微球,分散在2.5ml的蒸馏水中,将步骤(2)茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在40℃下以45r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得复合载药微球。经检测,其粒径均匀,分散性好。

实施例3

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶1.5

PEG-OQCMC∶OQCMC=2∶1

PEG-OQCMC、OQCMC总份数∶Chol=2.5∶1

阳离子高分子脂质体∶PLGA微球=1.4∶1

(1)将5ml浓度为30mg/ml的PVA溶液倒入烧杯中,用超声波细胞粉碎机进行超声,功率为150W,加入5ml浓度为20mg/ml的PLA-b-PGA溶液,继续超声,当形成均匀的泛有乳光的液体时即可停止,从而制的PLGA微球。磁力搅拌24小时后,蒸馏水清洗至少三次后,真空冻干即可。

(2)称取20mgPEG-OQCMC,10mgOQCMC,12mgChol,溶于4ml二氯甲烷中。将该混合物置于茄形瓶中,在32℃于旋转蒸发仪上以55r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸50min。

(3)称取30mg如步骤(1)所制PLGA微球,分散在3ml的蒸馏水中,将步骤(2)茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在32℃下以55r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得复合载药微球。经检测,其粒径均匀,分散性好。

实施例4

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶2

PLA-b-PGA、PVA总份数∶盐酸米诺环素=2∶1

PEG-OQCMC∶OQCMC=1∶2

PEG-OQCMC、OQCMC∶Chol=2∶1

阳离子高分子脂质体∶包载盐酸米诺环素的PLGA微球=1∶1

(1)称取80mgPLA-b-PGA置于烧瓶中,加入10ml蒸馏水,用超声波细胞粉碎机进行超声,功率为200W。向烧瓶中加入4ml浓度为30mg/ml的盐酸米诺环素甲醇溶液,继续超声,当烧瓶内液体均匀后停止。

(2)将烧瓶中超声后的溶液倒入盛有8ml浓度为20mg/ml PVA溶液的烧杯中,继续在200w功率的条件下超声,当形成均匀的泛有乳光的液体时即可停止,从而制的包载盐酸米诺环素的PLGA微球。

(3)采用磁力搅拌器搅拌24小时,用蒸馏水清洗微球,至少进行三次。然后将上述制备的PLGA载药微球真空冻干即可。

(4)称取10mgPEG-OQCMC,20mgOQCMC,15mgChol,溶于5ml二氯甲烷中。将该混合物置于茄形瓶中,在37℃下于旋转蒸发仪上以50r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸40min,从而制得阳离子高分子脂质体。

(5)称取45mg如步骤(3)所制的包载盐酸米诺环素PLGA微球,分散在4.5ml的蒸馏水中,将步骤(4)中的茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在37℃下以50r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得包载盐酸米诺环素复合载药微球。经检测,其粒径为340.1nm,多分散指数为0.145,如附图2所示;Zeta电位为28.80mv,半峰宽为3.34mv,如附图3所示;载药率为9.0%;包封率94%;由PLGA和高分子脂质体制备的复合载药体系,其缓释效果明显优于其他两组载药体系,见附图4。

实施例5

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶1

PLA-b-PGA、PVA总份数∶盐酸米诺环素=1∶1

PEG-OQCMC∶OQCMC=2∶1

PEG-OQCMC、OQCMC总份数∶Chol=3∶1

阳离子高分子脂质体∶包载盐酸米诺环素的PLGA微球=2∶1

(1)称取80mgPLA-b-PGA置于烧瓶中,加入10ml蒸馏水,用超声波细胞粉碎机进行超声,功率为180W。向烧瓶中加入8ml浓度为20mg/ml的盐酸米诺环素甲醇溶液,继续超声,当烧瓶内液体均匀后停止。

(2)将烧瓶中超声后的溶液倒入盛有4ml浓度为20mg/ml PVA溶液的烧杯中,继续在180w功率的条件下超声,当形成均匀的泛有乳光的液体时即可停止。从而制的包载盐酸米诺环素的PLGA微球。

(3)采用磁力搅拌器搅拌24小时,用蒸馏水清洗微球,至少进行三次。然后将上述制备的PLGA载药微球真空冻干即可。

(4)称取40mgPEG-OQCMC,20mgOQCMC,20mgChol,溶于6ml二氯甲烷中。将该混合物置于茄形瓶中,在32℃下于旋转蒸发仪上以45r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸30min,从而制得阳离子高分子脂质体。

(5)称取40mg如步骤(3)所制的包载盐酸米诺环素PLGA微球,分散在4ml的蒸馏水中,将步骤(4)中的茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在32℃下以45r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得包载盐酸米诺环素复合载药微球。经测试,其粒径为360.3nm,多分散指数为0.190;Zeta电位为30.89mv,半峰宽为4.76mv,载药率为8.7%,包封率93%。

实施例6

原料质量份数比如下:

PLA-b-PGA∶PVA=1∶1.4

PLA-b-PGA、PVA总份数∶盐酸米诺环素=1.2∶1

PEG-OQCMC∶OQCMC=1∶1

PEG-OQCMC、OQCMC总份数∶Chol=4∶1

阳离子高分子脂质体∶包载盐酸米诺环素的PLGA微球=1.5∶1

(1)称取100mgPLA-b-PGA置于烧瓶中,加入10ml蒸馏水,用超声波细胞粉碎机进行超声,功率为110W。向烧瓶中加入10ml浓度为20mg/ml的盐酸米诺环素甲醇溶液,继续超声,当烧瓶内液体均匀后停止。

(2)将烧瓶中超声后的溶液倒入盛有7ml浓度为20mg/ml PVA溶液的烧杯中,继续在110w功率的条件下超声,当形成均匀的泛有乳光的液体时即可停止。从而制的包载盐酸米诺环素的PLGA微球。

(3)采用磁力搅拌器搅拌24小时,用蒸馏水清洗微球,至少进行三次。然后将上述制备的PLGA载药微球真空冻干即可。

(4)称取30mgPEG-OQCMC,30mgOQCMC,15mgChol,溶于6ml二氯甲烷中。将该混合物置于茄形瓶中,在40℃下于旋转蒸发仪上以55r/min的旋转速度进行旋蒸,同时向旋转蒸发仪中通入氮气流加以保护。当茄形瓶中的有机溶剂完全挥发后,继续旋蒸50min,从而制得阳离子高分子脂质体。

(5)称取50mg如步骤(3)所制的包载盐酸米诺环素PLGA微球,分散在5ml的蒸馏水中,将步骤(4)中的茄形瓶取下,加入上述的PLGA微球和蒸馏水,然后继续在40℃下以55r/min的速度在旋转仪上旋转,将脂质膜均匀水化,当脂质体膜均匀的分散在溶液中,即可停止旋转,既得包载盐酸米诺环素复合载药微球。经测试,其粒径为358.7nm,多分散指数为0.169;Zeta电位为31.19mv,半峰宽为4.71mv,载药率为8.9%,包封率94%。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号