首页> 中国专利> 使未被吸收的红外激光再循环以增加红外激光吸收的红外塑料焊接

使未被吸收的红外激光再循环以增加红外激光吸收的红外塑料焊接

摘要

穿过要通过低吸收TTIr过程焊接的塑料部件的未被吸收的红外激光被再循环返回到低吸收焊接界面以用于该过程中的再吸收。红外激光束被导向到所要焊接的塑料部件处,透射性第一部件和吸收性(或部分吸收性)第二部件。红外激光入射到透射部件并且首先穿过所要焊接的透射部件到达两个部件的交界处的焊接界面。在焊接界面处,或者红外激光部分地被附加红外吸收体吸收,或者红外激光部分地被吸收部件吸收,或者两者皆有。红外激光的未被吸收的部分继续通过吸收部件并从远端出射。然后该红外激光被重新导向返回焊接界面。在第二次通过(以及其后任何后续的通过)时,更多红外激光在部分吸收介质(附加红外吸收体、吸收部件、或者两者皆有)中被吸收。在一个方面中,部件是管状部件,其中透射部件共轴地围绕吸收部件。采用共轴地围绕该管状部件的圆筒形反射镜重新导向红外激光。在一个方面中,该部件包括管状部件和配件,并且采用围绕该部件的球面反射镜重新导向红外激光。

著录项

  • 公开/公告号CN101681015A

    专利类型发明专利

  • 公开/公告日2010-03-24

    原文格式PDF

  • 申请/专利权人 必能信超声公司;

    申请/专利号CN200880014452.8

  • 发明设计人 斯科特·考德威尔;保罗·鲁尼;

    申请日2008-05-05

  • 分类号G02B17/00;F21V7/00;

  • 代理机构北京集佳知识产权代理有限公司;

  • 代理人杜诚

  • 地址 美国康涅狄格州

  • 入库时间 2023-12-17 23:48:38

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-04-04

    授权

    授权

  • 2010-06-16

    实质审查的生效 IPC(主分类):G02B17/00 申请日:20080505

    实质审查的生效

  • 2010-03-24

    公开

    公开

说明书

相关申请的交叉引用

本申请要求享有于2007年5月4日提交的第60/927,898号美国临时申请Photon Recirculator For Plastics Welding And Method of PlasticWelding的优先权。通过引用将上述申请的公开内容合并于此。

技术领域

本公开涉及塑料焊接,更具体地涉及塑料部件的激光焊接。

背景技术

激光焊接一般用于在焊接区域处连接塑料或树脂部件,比如热塑性部件。在美国专利第4,636,609号中可以找到激光器的这一用途的示例,通过引用将其明确地合并于此。

众所周知,激光器提供指定频率的电磁辐射的准聚焦光束(即,相干单色辐射)。有若干种可用的激光器;但是,红外激光器或非相干源提供了一种相对经济的用于加热焊接区域的辐射能量源。红外焊接的一个具体例子被称为透射红外(TTIr)焊接。TTIr焊接采用能够产生红外辐射的红外激光器,该红外辐射由透镜、衍射光学、光纤、波导、光管或者光导导向穿过第一塑料部件并且进入第二塑料部件。第一塑料部件通常被称作透射件,因为它通常允许来自激光器的激光束穿过。但是,第二塑料部件通常被称作吸收件,因为它通常吸收激光束的辐射能量以在焊接区域中产生热。焊接区域中的该热使得透射件和吸收件熔化并且被紧密接触地焊接在一起。

参照图1A和图1B,示出了用于塑料的激光焊接的典型的透射红外(TTIr)系统100和100’。来自红外激光源104的红外激光束102被导向至所要焊接的塑料部件106、108。红外激光穿过透射塑料部件106到达透射塑料部件和吸收塑料部件108的交界处的焊接界面110。焊接界面110在本领域中有时也被称为焊接位置、焊接区或焊接区域。在焊接界面110处可以提供红外吸收体添加物112(图1A)。激光的吸收加热部件106、108的交界处的焊接界面,熔化两个部件106、108中位于焊接界面110处的塑料。在适当的时间段之后比如通过关闭激光源102来去除激光,然后焊接界面110处的熔化的塑料冷却,从而将两个塑料部件106、108焊接在一起。

通常,吸收性的第二塑料部件108或者在焊接界面110处使用的红外吸收体添加物112是红外光的相对较低的吸收体。红外激光102的大部分(114处指示的)随后穿过两个部件106、108并从部件108穿出,在此过程中被浪费掉。

采用低吸收体,或者传递到焊接界面110的激光能量过低而不能进行焊接,或者需要采用相对高的激光能量以转换成焊接界面110处的足够能量来进行焊接。

发明内容

根据本公开的一个方面,穿过要通过低吸收TTIr过程焊接的塑料部件的未被吸收的红外激光被再循环返回到低吸收焊接界面以用于该过程中的再吸收。红外激光束被导向到所要焊接的塑料部件处,透射性第一部件和吸收性(或部分吸收性)第二部件。红外激光入射到透射部件并且首先穿过所要焊接的透射部件到达两个部件的交界处的焊接界面。在焊接界面处,或者红外激光部分地被附加红外吸收体吸收,或者红外激光部分地被吸收部件吸收,或者两者皆有。红外激光的未被吸收的部分继续通过吸收部件并从远端出射。然后该红外激光被重新导向回焊接界面。在第二次通过(以及其后任何后续的通过)时,更多红外激光在部分吸收介质(附加红外吸收体、吸收部件或者两者皆有)中被吸收。

在一个方面中,该部件是管状部件,其中透射部件共轴地围绕吸收部件。采用共轴地围绕该管状部件的圆筒形反射镜对红外激光进行重新导向。

在一个方面中,圆筒形反射镜将红外激光重新导向以使得红外激光最终从所有方向入射到该管状部件。

根据这里提供的描述,另外的适用范围将变得显而易见。应该理解,描述和具体示例只是为了说明的目的而不是旨在限制本公开的范围。

附图说明

这里描述的附图只是为了说明的目的而不是旨在以任何方式限制本公开的范围。

图1A和图1B是用于采用红外激光焊接塑料部件的现有技术的低吸收TTIr激光焊接系统的示意性图解;

图2是根据本公开的一个方面的具有用于将红外激光重新导向以穿过所要焊接的部件间的焊接界面的无限回路的低吸收TTIr激光焊接系统的示意性图解;

图3是根据本公开的一个方面的具有用于将红外激光多路径重新导向以穿过焊接界面的无限回路的低吸收TTIr激光焊接系统的示意性图解;

图4是现有技术中焊接管状部件的低吸收TTIr激光焊接系统中的红外激光的散射的示意性图解;

图5是焊接管状部件的低吸收TTIr激光焊接系统的示意性图解,其中未被吸收的红外激光被再循环到管状部件;以及

图6是焊接管状部件的低吸收TTIr激光焊接系统的示意性图解,其中管状部件之一是配件,其中未被吸收的红外激光被再循环到该部件。

具体实施方式

以下描述在性质上仅仅是示例性的,并不旨在限制本公开、申请或应用。应该理解,贯穿这些附图,对应的附图标记表示相似或对应的部件和特征。

根据本公开的一个方面,穿过要通过低吸收TTIr过程焊接的塑料部件的未被吸收红外激光被再循环返回到低吸收焊接界面以用于该过程中的再吸收。红外激光束被导向到所要焊接的塑料部件处,透射性第一部件和吸收性(或部分吸收性)第二部件。红外激光入射到透射部件并且首先穿过所要焊接的透射部件到达两个部件交界处的焊接界面。在焊接界面处,或者红外激光部分地被附加红外吸收体吸收,或者红外激光部分地被吸收部件吸收,或者两者皆有。

红外激光的未被吸收的部分继续通过吸收部件并从远端出射。然后通过采用反射镜、波导或者光纤将该红外激光重新导向返回到焊接界面。在第二次通过时,更多红外激光在部分吸收介质(附加红外吸收体、吸收部件或者两者皆有)中被吸收。

再一次,对于第二次通过,一些红外激光将不被吸收,并且将穿过所要焊接的部件。该红外激光可以再一次被重新导向返回到焊接界面。该过程可以被重复任意次,并且在某些变型中,可以具有无限次重复。即使在每次通过时部件的绝对红外激光吸收率较低,最终很大百分比的红外激光将在焊接界面处被吸收。

当红外激光被重新导向到所要焊接的部件处时,其可以被重新导向为在与最初入射光的方向相同的方向上,或者可以被重新导向为来自指向该焊接区域的某个其它角度。图2示出了包含具有无限回路的光子再循环器202的激光焊接系统200。在图2所示的说明性实施例中,无限光子再循环器包括光纤回路204,光纤回路204从红外激光出射吸收部件108的位置延伸回到红外激光最初入射到透射部件106的位置。通过将红外激光重新导向为在与直接从激光102的源104最初入射到透射部件上的红外激光102的方向相同的方向上,如图2所示建立了无限回路。

在一个变型中,红外激光被从另一角度重新导向到焊接界面,即,在与最初的入射红外激光的方向不同的方向上重新导向到焊接界面。在该变型中,如图3所示说明性地建立了多个通过角,并且红外激光的路径可以由一个或更多个反射镜重新导向以提供光子再循环器301,光子再循环器301提供红外激光102穿过焊接界面110的两次或更多次通过。在图3所示的说明性实施例中,激光焊接系统300包括多个反射镜,比如三个反射镜302、304、306。红外激光束102被导向至所要焊接的部件106、108。红外激光102首先穿过透射部件106到达焊接界面110。红外激光102的未被吸收的部分被反射镜302反射到反射镜304,由反射镜304反射返回通过部件106、108,其中它穿过焊接界面110。红外激光102的被反射镜304反射从透射部件106出射的未被吸收的部分被反射镜306反射返回通过部件106、108,其中它穿过焊接界面110。红外激光102的被反射镜306反射的未被吸收的部分被反射镜304反射到反射镜302,反射镜302将其反射返回通过部件106、108,其中它穿过焊接界面110。在图3的实施例中,红外激光102四次穿过部件106、108和焊接界面110。

参考图4,对于管状塑料部件,当红外激光穿过部件402、404时,入射到管状部件402、404上的红外激光102发生折射,如同管状部件402、404形成透镜。如图4中所示,这在红外激光102最初入射到外部部件402上的相反侧在大约半圆内散出红外激光102。说明性地,部件402是透射性塑料部件并且共轴地围绕部件404,部件404是吸收性塑料部件。

图5示出了激光焊接系统500,其包含将散出的红外激光102再循环返回到所要焊接的部件402、404的光子再循环器502。在图5的实施例中,光子再循环器502包括共轴地设置在管状部件402、404周围的圆筒形反射镜504。说明性地,圆筒形反射镜504包括开口,在该开口中由红外激光源104导入红外激光102。圆筒形反射镜504反射散出的红外激光102以将散出的红外激光再循环返回到管状部件402、404。如图5所示,圆筒形反射镜504具有连续对激光进行再循环的几何形状以使得最终红外激光从所要焊接的管状部件402、404周围的所有方向入射。最终,激光102的大部分被焊接过程中所用的低吸收的吸收体吸收,其中该吸收体是吸收性塑料部件404、布置在管状部件402、404的交界处的诸如红外吸收体添加物112(图1)的红外吸收体添加物、或者两者皆有。

应该理解,圆筒形反射镜504不必是连续的圆筒。例如,圆筒形反射镜504可以包括缝以利于使用传送系统将管状部件402、404移入和移出圆筒形反射镜504。

图6示出了用于焊接管状部件602、604的激光焊接系统600,其中管状部件604是诸如接头、弯管、套管等的配件。说明性地,管状部件602的末端被接纳在配件604中。在该说明性实施例中,部件602、604的表面的彼此邻接处是焊接界面。说明性地,配件604可以是透射部件而管状部件602是吸收部件。应该理解,管状部件602可以是透射部件而配件604是吸收部件,在该情况下配件604可以说明性地被接纳于配件602的末端。应该理解,可以将红外吸收体添加物布置在管状部件602和接头604之间的焊接界面处。

激光焊接系统600包括光子再循环器606,其将由部件602、604散出的穿过部件602、604的激光102再循环返回到焊接界面110。光子再循环器606包括球面反射镜608。在图6的实施例中,球面反射镜608包括相对的第一和第二半球面反射镜610,第一和第二半球面反射镜610由空间612彼此隔开以利于在光子循环器606中放置部件602、604。

应该理解,反射镜、波导或光纤可以用于重新导向红外激光。反射镜具有高效率的优点。波导和光纤相比于反射镜所必需的直光路而言具有几何形状更灵活的优点。波导和光纤与反射镜队列相比具有更大的光学接收角,这在无限回路设置中是有用的。

红外激光可以被重新导向到焊接界面以实现任意次数的通过。单次额外的通过或者较少次数的通过具有简单的优点。大量次数的通过具有所要焊接的部件的总体吸收效率更高的优点。

对于管状部件,共轴圆筒形反射镜设置有利地将红外激光从所有角度导向所要焊接的管状部件,并且建立在焊接过程中产生低吸收吸收体的高总体吸收的再循环的无限回路。

反射镜可以是具有高反射率薄膜涂层的金属的,或者是反射棱镜。波导可以是正透射电介质波导或者是负反射波导。光纤可以是单模光纤、多模光纤、自聚焦光纤、多孔光纤或空心光纤。

所要焊接的塑料部件可以在焊接界面处采用红外吸收添加物,或者可以在一个(或两个)部件中采用体红外吸收体。假定采用红外激光再循环时红外吸收体不是黑体,以使得一些红外光在最初的通过中从所要焊接的部件中漏出。

该过程中所用的红外激光器可以是红外激光器或者宽带红外源。准直红外激光更具有可导向性因此更适合于采用反射镜。

对红外激光进行再循环大大提高了焊接效率,并且允许在低吸收过程中焊接其它方式无法焊接的部件。需要使用的激光或宽带红外激光功率较小,从而降低了焊接机的消耗。

针对管状部件的再循环红外激光既改进了过程的总体吸收,又降低了从所有角度向管状组件传递红外光所需要的光学器件的复杂度。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号