首页> 中国专利> 耦合在光波导中传播的光与衍射光栅的光学器件

耦合在光波导中传播的光与衍射光栅的光学器件

摘要

本发明提供了一种耦合在光波导中传播的光与衍射光栅的光学器件。光波导传播激光束。主衍射光栅和副衍射光栅耦合在光波导中传播的光。主衍射光栅和副衍射光栅按照这样一种方式耦合光:与在只设有主衍射光栅时在光波导内传播的光的二次横模的传播相比,当同时设有主衍射光栅和副衍射光栅时在光波导内传播的光的二次横模的传播受到更大程度的抑制。

著录项

  • 公开/公告号CN1979241A

    专利类型发明专利

  • 公开/公告日2007-06-13

    原文格式PDF

  • 申请/专利权人 富士通株式会社;

    申请/专利号CN200610085039.3

  • 发明设计人 松田学;山本刚之;

    申请日2006-05-22

  • 分类号

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人李春晖

  • 地址 日本神奈川

  • 入库时间 2023-12-17 18:42:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-08-25

    授权

    授权

  • 2007-08-08

    实质审查的生效

    实质审查的生效

  • 2007-06-13

    公开

    公开

说明书

对相关申请的引用

本申请基于在2006年2月16日提交的日本专利申请No.2006-038840和在2005年12月9日提交的日本专利申请No.2005-355992并且要求了它们的优先权,这些文献的全部内容通过引用被结合在本申请中。

技术领域

本发明涉及这样一种光学器件,其中通过耦合在光波导中传播的光与衍射光栅来使所述光具有窄光谱。

本发明还涉及这样一种光学器件,它具有提高在光波导中传播的光和衍射光栅之间的耦合系数的结构。

背景技术

随着互联网需求的急剧增大,加强了与超高速大容量光通信和光传输相关的努力。对于具有千兆比特以上传输频带的以太网(Ethernet,注册商标)而言,已经寻找到这样一种半导体激光二极管,它廉价并且能够在非冷却状态中进行10Gb/s或更高的直接调制。能够满足这种要求的半导体激光二极管的例子包括分布反馈(DFB)激光二极管。

为了用低成本制造出DFB激光二极管,脊型波导分布反馈激光二极管是有前途的,它能够通过进行一次晶体生长而制造出来,即不需要在蚀刻工艺之后进行二次晶体生长。在将用于分布反馈的衍射光栅形成在脊型波导分布反馈激光二极管上时,在脊部的两侧形成衍射光栅与在晶体中形成衍射光栅相比在制造成本方面具有更大的优点。

图24为传统脊型波导DFB激光二极管的透视图。将一活性层501和一包覆层502顺序层叠在半导体衬底500上。在包覆层上形成沿着一个方向延伸的脊部503。在脊部503的两个侧面上形成有衍射光栅504。在脊部503下面的活性层501用作光波导。

图25显示出传统脊型波导DFB激光二极管的另一个示例。虽然在图24中所示的脊型波导DFB激光二极管的衍射光栅504形成在脊部503的两个侧面上,但是在图25中所示的示例中,在位于脊部503的两侧的平面上形成衍射光栅504A,用来代替衍射光栅504。其他结构与在图24中所示的激光二极管相同。

图26显示出在光波导中传播的光和衍射光栅之间的位置关系。衍射光栅504或504A设置在脊部503的两侧。如由实线510所示一样,基横模的光强度分布在脊部503沿着宽度方向的中央处具有最大值,并且强度随着位置从中央后退而逐渐降低。第一高次横模(下面缩写为“二次横模”)的光强度分布在脊部503沿着宽度方向的中央处具有最小值,其强度逐渐增大,并且在脊部的两侧上具有最大值,如由实线511所示一样。在处于最大值的位置之外的区域中,光强度随着位置从脊部503的中央后退而单调降低。

由于衍射光栅不是设置在脊部503中央附近而是设置在脊部503的两侧上,所以在衍射光栅所在区域中二次横模的光强度高于基横模的光强度。因此,二次横模和衍射光栅之间的耦合系数大约是基横模和衍射光栅之间的耦合系数的1.5至2倍。因此容易产生二次横模的振荡。

为了降低二次横模和衍射光栅之间的耦合系数,必须使脊部503更薄,并使这些衍射光栅更靠近脊部503的中心。但是,当脊部503变薄时,激光二极管的电阻增大。使脊部503变薄会导致功耗增大以及由于在大电流注入过程中的发热而引起的光输出降低。

JP-A-2003-152273披露了一种能够抑制高次横模的半导体激光二极管。

图27为一水平剖面图,显示了在JP-A-2003-152273中披露的半导体激光二极管的脊部。衍射光栅521形成在脊部520的两侧表面上。在衍射光栅521的外部凹凸表面上形成InGaAs光吸收层522,光吸收层吸收振荡光。与基横模的光相比,光吸收层522吸收了更多的高次横模的光,从而可以抑制高次横模的振荡。

下面将描述在具有埋入式波导的激光二极管(以下称之为埋入式异质结构激光二极管)中的光的横模。

图28是传统埋入式异质结构激光二极管的透视图。在半导体衬底550的表面上形成沿着一个方向延伸的平台部分551。在平台部分551的上表面上形成衍射光栅552,在衍射光栅552上形成活性层553。在平台部分551的两侧的平面上形成埋层555。在埋层555上形成电流限制层556。上包覆层557覆盖着活性层553和电流限制层556。

图29为一曲线图,显示出在活性层的宽度和光与图28所示的埋入式异质结构激光二极管的衍射光栅之间的耦合系数之间的关系。曲线a显示基横模的耦合系数,曲线b显示二次横模的耦合系数。

由于衍射光栅552设置在活性层553沿着宽度方向的整个表面上,所以基横模的耦合系数a大体上高于二次横模的耦合系数b。如果活性层553的宽度是1.4μm(截止宽度)或者更窄,则二次横模将不会振荡。

发明内容

在JP-A-2003-152273中披露的激光二极管中,由于存在图27所示的光吸收层522,所以基横模的波导损耗增大。因此,振荡阈值升高大约50-200%。

在图28中所示的埋入式异质结构激光二极管中,如果活性层553的宽度是截止宽度或者更窄,二次横模将不会振荡。但是如果活性层553的宽度如图29所示那样宽,则二次横模的耦合系数变高,并且随着活性层553变宽,基横模耦合系数和二次横模耦合系数之间的差值变小。在图29所示的例子中,在活性层553的宽度变成2.5μm或更宽时,二次横模耦合系数呈现出振荡所必需的数值。因此,活性层553宽度超过2.5μm不是优选的。

如在图28所示的埋入式异质结构激光二极管的情况中一样,在将衍射光栅设置在位于脊部下方的衬底中的脊型波导DFB激光二极管中,如果使脊部变宽,则二次横模容易振荡。

为了改善DFB激光二极管的光输出特性,使脊部和活性层变宽是有效的。希望提供即使在脊部和活性层变宽的情况下也能抑制二次横模振荡的技术。

在图24和25中所示的脊型波导DFB激光二极管的脊部503的两侧上的空间通常填充有空气或者介电材料例如SiO2和苯并环丁烯(BCB)。这些材料的折射率大约是1至1.7 ,它与通常的半导体材料的3.2至3.5的折射率相比非常低。因为这种折射率差,在活性层501中沿着脊部503传播的光的强度分布朝着衬底侧极大地扩展,并朝着脊部503两侧的空间非常窄地扩展。因此,在将衍射光栅设置在脊部503的两个侧面上或者在位于脊部503的两侧的平面上的DFB激光二极管中,光和衍射光栅之间的耦合系数κ比将衍射光栅设置在衬底中的激光二极管更低。

将衍射光栅设置在衬底中的DFB激光二极管的耦合系数κ大约是250cm-1。相比之下,将衍射光栅设置在衬底表面上的DFB激光二极管的耦合系数κ大约是90cm-1(Watanabe等,“Laterally CoupledStrained MQW Ridge Waveguide Distributed-Feedback laser DiodeFabricated by Wet-Dry Hybrid Etching Process”,IEEE PhotonicsTechnology Letters,Vol.10,No.12,December 1998)。

通常,为了改善高速直接调制特性,减小激光二极管的寄生电容是有效的。为了减小寄生电容,例如优选的是,将激光二极管的光谐振器长度设定为250μm或更短。例如,光谐振器长度L为250μm并且耦合系数κ为90cm-1的激光二极管的归一化耦合系数κL是2.25。但是,能够实现10Gb/s或更高的高速调制的四分之一波长移位DFB激光二极管的最佳归一化耦合系数κL是2.4至2.7。当归一化耦合系数κL小于2.4时,作为直接调制操作的调制速度的指标的弛豫振荡频率降低,从而不能实现在10Gb/s或者更高速率下的高速调制特性。当归一化耦合系数κL大于2.7时,光分布集中在靠近衍射光栅沿着光谐振器的轴向具有相位移动的区域上。因此,由轴向的烧孔效应(holeburning)所引起的次要模容易振荡,从而阻碍单个纵模振荡。另外,由于光被更强烈的限制在光谐振器中,因此从端面向外的光输出下降。

为了使耦合系数κ约为90cm-1的DFB激光二极管实现足够大的归一化耦合系数κL,要求光谐振器长度L长于250μm。当光谐振器长度L长于250μm时,寄生电容变大,从而损害高速调制特性。

如上所述,在将衍射光栅设置在衬底表面上的传统DFB激光二极管中,难以满足两个相互矛盾的条件:将归一化耦合系数κL设定为一个适当的值以及实现良好的高速调制特性。

根据本发明的一个方面,提供一种光学器件,包括:光波导,用于传播激光束;主衍射光栅,其与在光波导内传播的光耦合;以及副衍射光栅,其与在光波导内传播的光耦合,其中主衍射光栅和副衍射光栅按照如下方式耦合所述光:与仅设置主衍射光栅时在光波导内传播的光的二次横模传播相比,当同时设置主衍射光栅和副衍射光栅时在光波导内传播的光的二次横模传播被更大地抑制。

根据本发明的另一方面,提供一种光学器件,包括:半导体衬底;下包覆层,它形成在半导体衬底上;光波导层,它由折射率比下包覆层的折射率高的介质形成;脊形上包覆层,它在光波导的部分区域上沿着一个方向延伸,上包覆层由折射率比下包覆层的折射率高的介质形成;以及衍射光栅,它沿着由上包覆层构成的脊部的延伸方向具有周期性并且设置在光波导层上方。

由于二次横模的传播受到抑制,因此可以传播仅包括基横模的单模光。

当上包覆层的折射率被设定为比下包覆层的高时,在活性层之上的区域中的光强度变大。因此可以提高光和衍射光栅之间的耦合系数。

附图说明

图1为根据第一实施方案的脊型波导DFB激光二极管的透视图。

图2为一示意图,显示出第一实施方案的脊型波导DFB激光二极管的主衍射光栅和副衍射光栅与基横模和二次横模的光的强度分布之间的位置关系。

图3为一曲线图,显示出衍射光栅的占空比和衍射强度之间的关系,曲线c表示沿着与光的传播方向垂直的方向的衍射强度,并且曲线d表示光沿着传播方向的衍射强度。

图4A至4D为透视图,显示出在第一实施方案的制造期间的脊型波导DFB激光二极管。

图5为根据第一实施方案变型的脊型波导DFB激光二极管的透视图。

图6A为一示意图,显示出根据第一实施方案变型的脊型波导DFB激光二极管的光强度分布,并且图6B为一示意图,显示出根据比较实施例的脊型波导DFB激光二极管的光强度分布。

图7为根据第二实施方案的脊型波导DFB激光二极管的透视图。

图8为一示意图,显示出根据第二实施方案的脊型波导DFB激光二极管的主衍射光栅和副衍射光栅,以及正在传播的与衍射光栅耦合的光。

图9为根据第三实施方案的脊型波导DFB激光二极管的透视图。

图10为一示意图,显示出根据第三实施方案的脊型波导DFB激光二极管的主衍射光栅和副衍射光栅以及与这些衍射光栅耦合的光传播。

图11为根据第四实施方案的脊型波导DFB激光二极管的透视图。

图12A至12E为透视图,显示出在第四实施方案的制造期间脊型波导DFB激光二极管。

图13为根据第五实施方案的脊型波导DFB激光二极管的透视图。

图14为根据第六实施方案的脊型波导DFB激光二极管的透视图。

图15为根据第七实施方案的脊型波导DFB激光二极管的透视图。

图16A至16E为透视图,显示出在第七实施方案的制造期间的脊型波导DFB激光二极管。

图17为根据第八实施方案的脊型波导DFB激光二极管的透视图。

图18为根据第九实施方案的脊型波导DFB激光二极管的透视图。

图19A至19E为透视图,显示出在根据第十实施方案的在制造期间的埋入式异质结构激光二极管,并且图19F为第十实施方案的埋入式异质结构激光二极管的透视图。

图20为一透视图,显示出根据第十一实施方案的在制造期间的埋入式异质结构激光二极管。

图21为一透视图,显示出根据第十二实施方案的在制造期间的埋入式异质结构激光二极管。

图22为一透视图,显示出根据第十三实施方案的在制造期间的脊型波导DFB激光二极管。

图23为根据第十四实施方案的DBR激光二极管的剖视图。

图24为传统脊型波导DFB激光二极管的透视图。

图25为传统脊型波导DFB激光二极管的透视图。

图26为一示意图,显示出传统脊型波导DFB激光二极管的衍射光栅与基横模和二次横模的光强度分布之间的位置关系。

图27为传统脊型波导DFB激光二极管的水平剖视图。

图28为传统埋入式异质结构激光二极管的透视图。

图29为一曲线图,显示出在传统埋入式异质结构激光二极管的活性层宽度和耦合系数之间的关系,曲线a表示基横模的耦合系数,并且曲线b表示二次横模的耦合系数。

具体实施方式

图1为根据第一实施方案的脊型波导DFB激光二极管的透视图。在n型GaAs衬底的主表面上依次层叠有厚度为1.5μm的n型Al0.5Ga0.5As的下包覆层2、厚度为0.15μm的n型Al0.3Ga0.7As的下光导层3、量子点活性层(光波导层)4和厚度为0.15μm的p型Al0.3Ga0.7As的上光导层5。

量子点活性层4具有一层叠结构,该结构具有十个重复单元,每个单元具有包含多个InAs量子点的InGaAs层和夹着该InGaAs层的GaAs层,这十个重复单元沿着厚度方向层叠。

在上光导层5上设有沿着一个方向伸长的高度为1.4μm并且宽度为2μm的脊部10。在脊部10的两个侧面上形成有主衍射光栅11,该主衍射光栅沿着脊部10的纵向方向具有周期性。该主衍射光栅11具有这样一种结构,即沿着脊部10的纵向方向交替设有沿着脊部10的高度方向延伸的凸形和凹形部分。主衍射光栅11的周期为198nm,并且从凹形部分的底部到凸形部分的顶部的高度为500nm。

该脊部10具有一种双层结构,该结构由厚度为1.2μm的p型Al0.3Ga0.7As的上包覆层6和形成在上包覆层6上并且厚度为0.2μm的p型GaAs的接触层7构成。

在脊部10的两侧,在上光导层5的平面上形成有沿着脊部10的纵向方向具有周期性的副衍射光栅12。副衍射光栅12由多个以规则间隔沿着脊部10的纵向方向设置的凸形部分构成。副衍射光栅12的周期为396nm,即为主衍射光栅11的周期的两倍。构成副衍射光栅12的凸形部分具有与脊部10相同的双层结构,并且其高度等于脊部10的高度。凸形部分沿着脊部10的纵向方向的尺寸为198nm。凸形部分沿着与脊部10的纵向方向垂直的方向的尺寸为0.5μm。

副衍射光栅12的凸形部分可以按照这样一种方式设置:使凸形部分的端面接触主衍射光栅11的凸形部分的前端,或者按照这样一种方式设置:使该端面以较小的间隙相对于主衍射光栅11的凸形部分的前端设置。

在脊部10上形成p侧(上)电极14,并且在衬底1的底部上形成n侧(下)电极15。上电极14和下电极15分别由例如AuZn/Au和AuGe/Au制成。激光二极管的半导体表面通常覆盖有氧化硅、氮化硅、苯并环丁烯(BCB)等保护膜。

量子点活性层4具有高于下包覆层2、下光导层3、上光导层5和上包覆层6中任一个的有效折射率。在脊部10下面的量子点活性层4的区域用作使光沿着脊部10的纵向方向传播的光波导。在光波导中传播的光与主衍射光栅11和副衍射光栅12耦合。

由主衍射光栅11所选的光的波长λ由下式给出:

λ=2×p1×ne

其中ne为光波导的有效折射率,并且p1为主衍射光栅11的周期。在上电极14和下电极15之间施加电压以将载流子注入到量子点活性层4中,使得脊型波导DFB激光二极管以由上面方程式表示的波长λ振荡。

在图1中,主衍射光栅11和副衍射光栅12的周期与整个激光二极管的尺寸相比显示得相对较大。在本说明书所附的这些图中,衍射光栅的周期与整个激光二极管的尺寸相比显示得相对较大。

图2显示出第一实施方案的脊型波导DFB激光二极管的主衍射光栅11和副衍射光栅12与沿着横向方向的光强度分布之间的位置关系的例子。主衍射光栅11设置在脊部10的两个侧面上,该主衍射光栅11具有这样一种周期性结构:其中高折射率区域(凸形部分)和低折射率区域(凹形部分)交替设置。副衍射光栅12设置在主衍射光栅11外面,该副衍射光栅12具有这样一种周期性结构:其中高折射率区域(凸形部分)和低折射率区域交替排列。

基横模的光强度分布由实线20表示,并且二次横模的光强度分布由实线21表示。基横模的光强度分布20在脊部10沿着宽度方向的中央处具有最大值,并且光强度在远离中央的位置上逐渐降低。二次横模的光强度分布21在脊部10沿着宽度方向的中央处具有最小值,并且在脊部10的侧表面附近具有最大值。

二次横模在其中设有主衍射光栅11的区域A和其中设有副衍射光栅12的区域B中都具有相对较高的光强度。基横模在设有主衍射光栅11的区域A中具有相对较高的光强度。在设有副衍射光栅12的区域B中该基横模的光强度明显低于在设有主衍射光栅11的区域中基横模的光强度。

因此,基横模和副衍射光栅12之间的耦合系数低于基横模和主衍射光栅11之间的耦合系数。相反,二次横模与主衍射光栅11和副衍射光栅12之间都具有高耦合系数。存在以下不等式:

(k11-k12)>(k21-k22)

其中k11为基横模和主衍射光栅11之间的耦合系数,k12为基横模和副衍射光栅12之间的耦合系数,k21为二次横模和主衍射光栅11之间的耦合系数,并且k22为二次横模和副衍射光栅12之间的耦合系数。

也就是说,基横模受到主衍射光栅11的强烈影响,但是几乎不会受到副衍射光栅12的影响。二次横模受到主衍射光栅11和副衍射光栅12二者的强烈影响。

接着,参照图3,将对由主衍射光栅11所选波长的光如何受到副衍射光栅12的影响进行说明。

图3显示出副衍射光栅12的几何形状和衍射强度。图3的横坐标以“%”为单位表示出凸形部分相对于副衍射光栅12的一个周期的占空比,而纵坐标以任意单位表示出衍射强度。曲线c表示沿着与衬底表面垂直的方向的衍射强度,并且曲线d表示沿着光传播方向的衍射强度。

在50%的占空比处,沿着与衬底表面垂直的方向的衍射强度到达其最大值。在占空比偏离50%时,沿着与衬底表面垂直的方向的衍射强度变弱,并且在0%和100%的占空比下,衍射强度为0。

因此,在副衍射光栅12的占空比接近50%的情况下,光的传播损失较大。由于基横模几乎不会受到副衍射光栅12的影响,所以基横模的传播损失将不会增大。相反,在二次横模中,光被强耦合到副衍射光栅12,并且沿着与波导垂直的方向衍射,从而衍射损失较大。

沿着光波导传播并且耦合到主衍射光栅11的二次横模的光通过副衍射光栅12衍射并且再耦合到光波导。“二次横模由副衍射光栅再耦合的程度”被定义为二次横模的衍射光再耦合到光波导的程度。在光波导中传播并且耦合到衍射光栅11的基横模的光通过副衍射光栅12衍射并且再耦合到光波导。“基横模由副衍射光栅再耦合的程度”被定义为基横模的衍射光再耦合到光波导的程度。在第一实施方案中,二次横模由副衍射光栅再耦合的程度比基横模由副衍射光栅再耦合的程度弱。因此可以抑制二次横模的振荡。

为了获得足够的抑制二次横模振荡的效果,优选的是将副衍射光栅12的占空比设定为35%-65%。在第一实施方案中,副衍射光栅12的周期设定为主衍射光栅11的周期的两倍。如果将副衍射光栅12的周期设定为主衍射光栅11的1.2倍或更大,则光以不被再耦合到光波导的角度衍射,从而可以充分抑制二次横模的振荡。

在第一实施方案中,已经对比描述了基横模和二次横模。次数比二次横模更高的横模比基横模更强地耦合到副衍射光栅12。因此,第一实施方案的脊型波导DFB激光二极管可以抑制比二次横模更高次的横模的振荡。

接下来将参照图4A至4D对第一实施方案的脊形光波导DFB激光二极管的制造方法进行说明。

如图4A所示,下包覆层2、下光导层3、量子点活性层4、上光导层5、上包覆层6和接触层7通过分子束外延(MBE)在衬底1上生长。

如图4B所示,在接触层7上形成有用于由电子束曝光的抗蚀剂膜8。

如图4C所示,抗蚀剂膜8由电子束曝光并且显影以形成抗蚀剂图案8a和8b。抗蚀剂图案8a与在其两个侧面上具有主衍射光栅11的脊部10(图1)的平面形状对应,而抗蚀剂图案8b与副衍射光栅12的凸形部分的平面形状对应。

通过使用抗蚀剂图案8a和8b作为掩模,接触层7和上包覆层6被蚀刻,并且该蚀刻在上光导层5的上表面处停止。该蚀刻的例子包括采用Cl2作为蚀刻气体进行的干法蚀刻。

如图4D所示,这样就形成了与抗蚀剂图案8a和8b具有相同的平面形状的主衍射光栅11和副衍射光栅12。在蚀刻之后,去除抗蚀剂图案8a和8b。

如图1所示,在脊部10的上表面上形成p侧电极14,并且在衬底1的底面上形成n侧电极15。例如,通过真空沉积法来形成这些电极。例如可以通过剥离(lift-off)法来限定p侧电极14的平面形状。

图5为根据第一实施方案的一种变型的脊型波导DFB激光二极管的透视图。在下面的说明书中,着重给出了与第一实施方案的脊型波导DFB激光二极管不同的地方。省略了针对与第一实施方案脊型波导DFB激光二极管相同的结构的说明。

在第一实施方案中,下光导层3设置在下包覆层2和活性层4之间。在该变型中,没有设置光导层3,并且下包覆层2接触着活性层4。在第一实施方案中,上光导层5的厚度为0.15μm,而在该变型中,厚度为0.1μm。

在图6A中的左侧显示出沿着与光波导垂直的横截面的光强度分布的实施例,并且右侧显示出沿着厚度方向的折射率分布。上光导层5和上包覆层6由Al0.3Ga0.7As制成,并且下包覆层2由Al0.5Ga0.5As制成。下包覆层2的折射率因此低于上光导层5和上包覆层6的折射率。为了比较,图6B显示出光强度分布和折射率分布,其中下包覆层2a由其组分比与上光导层5和下包覆层6相同的AlGaAs制成。

与扩展到具有低折射率的介质中相比,光扩展到具有高折射率的介质中的趋势更高。因此,与在图6B中所示的比较实施例相比,光强度在第一实施方案变型的活性层4的上方更高。主衍射光栅11形成在脊部10的两个侧面上,并且副衍射光栅12形成在位于脊部10两侧的平面上。这两个衍射光栅都设置在活性层4上方。因此,与在第一实施方案的变型中一样,可以通过将设置在活性层4的衬底侧的介质,具体地说就是下包覆层2的折射率设定为小于设置在活性层4上方的介质,具体地说就是上光导层5和上包覆层6的折射率,来使耦合系数κ变大。例如,第一实施方案变型的脊型波导DFB激光二极管的耦合系数κ大约为在图6B中所示的比较用激光二极管的耦合系数的1.3至1.6倍。可以省略上光导层5以将脊形上包覆层6直接设置在活性层4上。

通过采用根据第一实施方案变型的结构,可以缩短光谐振器长度L,同时使由耦合系数和光谐振器长度L的乘积定义的归一化耦合系数κL保持恒定。在缩短光谐振器长度L时,寄生电容变小,从而可以预期将有高速调制特性方面的改进。例如,需要将在图6B中所示的激光二极管的光谐振器长度L设定为250μm或更长以便保持足够的归一化耦合系数κ。相反,在根据在图6A中所示的第一实施方案变型的激光二极管的情况中,可以将光谐振器长度缩短为大约200μm。

在图1中所示的第一实施方案中,由与上光导层5和上包覆层6具有相同组分比的AlGaAs制成的下光导层3被设置在活性层4和下包覆层2之间。但是,由于下光导层3的厚度至多为0.15μm,所以光强度分布扩展到下包覆层2中。由于下包覆层2的折射率小于上光导层5和上包覆层6的折射率,所以可以期望实现与在图5中所示的第一实施方案变型相同的效果。

可以通过在衬底侧设置其折射率小于构成一部分脊部10的上光学包覆层6的折射率的介质来提高耦合系数κ。

在第一实施方案及其变型中,虽然位于活性层4的衬底侧的介质具有n型导电性并且在脊部10侧的介质具有p型导电性,但是该导电性可以相反,即在衬底侧的介质具有p型导电性,而在脊部10侧的介质具有n型导电性。由于脊部10具有容易具有低电阻的n型导电性,所以可以降低激光二极管的电阻。因此改善了光学输出。

在第一实施方案及其变型中,采用GaAs衬底,包覆层由AlGaAs制成,并且InGaAs/GaAs量子点层用作活性层。这些可以由与之不同的化合物半导体制成。

例如,在图5中所示的第一实施方案的变型中,衬底1和下包覆层2由p型InP制成。活性层4具有这样一种结构,即厚度为6nm的未掺杂AlGaInAs量子阱层和厚度为10nm的未掺杂AlGaInAs阻挡层交替层叠十次,并且该交替层叠结构夹在厚度为20nm的未搀杂AlGaInAs引导层之间。构成阻挡层和引导层的AlGaInAs的复合波长为1050nm。上光导层5和上包覆层6由复合波长为950nm的n型GaInAsP或AlGaInAs制成,并且接触层7由n型GaInAs制成。接触n型接触层的电极14由AuGe/Au层叠层制成,并且接触着p型衬底1的电极15由AuZn/Au层叠层制成。在该情况下,主衍射光栅11的周期被设定为198nm。

图7为根据第二实施方案的脊型波导DFB激光二极管的透视图。与第一实施方案的脊型波导DFB激光二极管相比,第二实施方案的脊型波导DFB激光二极管的副衍射光栅的结构与第一实施方案的结构不同,并且其它结构相同。

在第一实施方案中,设置在脊部10的两侧的副衍射光栅的两个部分的相位相同,而在第二实施方案中,设置在脊部10的一侧的副衍射光栅12A的相位与设置在另一侧的副衍射光栅12A的相位偏差了主衍射光栅11的半个周期。副衍射光栅两个部分的每一个的周期为主衍射光栅11的周期的两倍。凸形部分相对于副衍射光栅12A的一个周期的占空比为25%。

虽然图7显示构成副衍射光栅12A的凸形部分低于脊部10,但是如在第一实施方案的情况中一样,构成副衍射光栅12A的凸形部分可以具有与脊部10的高度相同的高度。

图8为一示意图,显示出在主衍射光栅11和副衍射光栅12A之间的相位关系。主衍射光栅11设置在脊部10的两个侧面上,并且副衍射光栅12A设置在主衍射光栅11外面。在图8中的阴影区域对应于具有相对较高折射率的区域。

在光波导中传播的光的波长为主衍射光栅11的周期p1的两倍。由一个副衍射光栅12A衍射并且沿着相反方向传播的光LA和由另一个副衍射光栅12A衍射并且沿着相反方向传播的光LB的相移为副衍射光栅12A的两个部分的相移的两倍,即一个等于主衍射光栅11的周期p1的相移。该相移量等于光波长的一半。因此,由一个副衍射光栅12A衍射的光与由另一个副衍射光栅12A衍射的光相差180°的相移。所衍射的光LA和光LB相互削弱。

由于在光波导中传播的光的基横模与主衍射光栅1耦合并且几乎不与副衍射光栅12A耦合,所以基横模几乎不会被副衍射光栅12A弱化。相反,由于高次横模与基横模相比更强地与副衍射光栅12A耦合,所以由副衍射光栅12A导致的损失变大。

因此可以抑制高次横模的振荡,并且优先使基横模振荡。

第二实施方案利用了由副衍射光栅12A的两个部分衍射并且沿着传播方向在光波导中传播的两个衍射光之间的相互相移。因此优选按照这样一种方式设计副衍射光栅12A:使沿着传播方向的光衍射强度变高。如图3中的曲线d所示,沿着传播方向的光衍射强度在25%和75%的占空比下到达其最大值。为了增大沿着传播方向的光衍射强度,优选将副衍射光栅的占空比设定为15%至35%或者为65%至85%。

同样,在第二实施方案中,与在图5中所示的第一实施方案的变型的情况中一样,可以省略下引导层3以使下包覆层2与活性层4直接接触。在活性层4的衬底侧的介质的导电性类型和在脊部侧的介质的导电性类型可以相反。同样,在第二实施方案中,与在第一实施方案的变型的情况中一样,可以使耦合系数κ较大。

图9为根据第三实施方案的脊型波导DFB激光二极管的透视图。与第一实施方案的脊型波导DFB激光二极管相比,第三实施方案的脊型波导DFB激光二极管具有与第一实施方案不同的副衍射光栅结构,并且其它结构相同。

根据第三实施方案的脊型波导DFB激光二极管的副衍射光栅12B具有与主衍射光栅11相同的周期,并且与主衍射光栅11的周期相差180°的相位差。虽然图9显示出其中构成副衍射光栅12B的凸形部分低于脊部10的结构,但是如在第一实施方案的情况中一样,副衍射光栅12B可以具有与脊部10相同的高度。

图10为一示意图,显示出在主衍射光栅11和副衍射光栅12B之间的相位关系。主衍射光栅11设置在脊部10的两个侧面上,并且副衍射光栅12B设置在主衍射光栅11外面。在图10中的阴影区域对应于具有相对较高折射率的区域。

在光波导中传播的光由主衍射光栅11和副衍射光栅12B衍射。由主衍射光栅11衍射的光L1与由副衍射光栅12B衍射的光L2相差180°的相位差。因此副衍射光栅12B具有使与主衍射光栅11耦合的光弱化的功能。

由于在光波导中传播的光的基横模与主衍射光栅11耦合并且几乎不与副衍射光栅12B耦合,所以基横模几乎不会被副衍射光栅12B弱化。相反,由于高次横模更强地与基本衍射光栅11和副衍射光栅12B二者耦合,所以高次横模被副衍射光栅12B弱化。

因此可以抑制高次横模的振荡,并且优先使基横模振荡。

同样,在第三实施方案中,如在图5中所示的第一实施方案的变型情况中一样,下引导层3可以省略,从而使下包覆层2与活性层4直接接触。在活性层4的衬底侧的介质的导电性类型和在脊部侧的介质的导电性类型可以相反。同样,在第三实施方案中,与在第一实施方案的变型的情况中一样,可以使耦合系数κ较大。

图11为根据第四实施方案的脊型波导DFB激光二极管的透视图。由周期性排列的凸形和凹形部分构成的主衍射光栅60形成在n型InP衬底51的主表面上。在主衍射光栅60的表面上形成有厚度为0.1μm的n型GaInAsP光导层52。

在光导层52上形成有量子阱活性层53。该量子阱活性层53具有这样一种结构,其中厚度为6nm的未搀杂AlGaInAs量子阱和厚度为10nm的未搀杂AlGaInAs阻挡层交替重叠十次,并且这种交替重叠结构夹在厚度为20nm的未搀杂AlGaInAs引导层之间。构成阻挡层和引导层的AlGaInAs的复合波长为1050nm。

在量子阱活性层53上形成有p型InP上包覆层54。上包覆层54由覆盖衬底的整个主表面的薄膜形部分、沿着第一方向延伸的脊部61和由多个设置在脊部61的两侧的凸形部分构成的副衍射光栅62构成。薄膜形部分的厚度为0.1μm。脊部61的高度为1.2μm,并且其宽度为2μm。构成副衍射光栅62的凸形部分沿着与主衍射光栅60的周期的方向平行的方向周期性排列。

在脊部61上形成p型GaInAs接触层55。在接触层55上形成p侧电极56,并且在衬底51的底面上形成n侧电极57。

主衍射光栅60和副衍射光栅62具有周期性结构,即折射率沿着脊部61的延伸方向周期性变化。主衍射光栅60的周期为200nm,并且从凹形部分的底部到凸形部分的上表面的高度为50nm。每个凹形部分沿着周期性方向的尺寸为100nm。也就是说,在相邻凹形部分之间的距离也为100nm,并且占空比为50%。

副衍射光栅62的周期为400nm,每个凸形部分的高度为100nm,并且每个凸形部分沿着周期性方向的尺寸为100nm。也就是说,副衍射光栅62的占空比为25%。可以将占空比设定为15至35%或者为65至85%。设置在脊部61的一侧的副衍射光栅的周期性结构和设置在另一侧的副衍射光栅62的周期性结构具有100nm的相位差,即主衍射光栅60的相位差的一半。

量子阱活性层53的在脊部61下面的区域构成用于使光沿着脊部61的纵向方向传播的光波导。主衍射光栅60设置在光波导的整个宽度方向上。副衍射光栅62只是设置在光波导外面,并且没有设置在副衍射光栅62沿着光波导的宽度方向与之重叠的区域中。因此,在光波导中传播的光的基横模与主衍射光栅60很强地耦合,并且几乎不与副衍射光栅62耦合。相反,高次横模与主衍射光栅60耦合,并且比基横模更强地与副衍射光栅62耦合。

因此,与在根据在图7和8中所示的第二实施方案的脊型波导DFB激光二极管的副衍射光栅12A的情况中一样,根据第四实施方案的脊型波导DFB激光二极管的副衍射光栅62提高了高次横模的传播损失。因此可以抑制高次横模的振荡。

接下来将参照图12A至12E对第四实施方案的脊型波导DFB激光二极管的制造方法进行说明。

如图12A所示,通过干涉曝光或电子束曝光在n型InP的衬底51的主表面上形成抗蚀剂图案70。该抗蚀剂图案70与主衍射光栅60的周期性结构对应。通过使用抗蚀剂图案70作为掩模,对衬底51的表面层进行干法蚀刻。在蚀刻之后,去除抗蚀剂图案70。

图12B显示出在去除抗蚀剂图案70之后的衬底51。主衍射光栅60由在没有被抗蚀剂图案70覆盖的区域中的凹形部分以及位于凹形部分之间的凸形部分构成。

如图12C所示,n型GaInAsP光导层52、量子阱活性层53、p型InP上包覆层54和p型GaInAs接触层55例如通过金属有机气相沉积(MOVPD)在形成有主衍射光栅60的衬底的主表面上生长。在接触层55上形成有与在图11中所示的脊部61对应的氧化硅掩模图案71。

如图12D所示,通过使用掩模图案71作为掩模,干法蚀刻接触层55,并且将上包覆层54干法蚀刻至一定深度。

如图12E所示,通过电子束曝光在位于掩模图案71的两侧的平面上形成抗蚀剂图案72,该抗蚀剂图案72对应于构成在图11中所示的副衍射光栅62的凸形部分。通过使用掩模图案71和抗蚀剂图案72作为掩模,将上包覆层54干法蚀刻至一定深度。在将上包覆层54蚀刻至一定深度之后,去除抗蚀剂图案72和掩模图案71。

这样就形成了如图11所示的脊部61和副衍射光栅62。通过剥离法在接触层55上形成p侧电极56。在衬底51的底面上形成n侧电极57。

图13为根据第五实施方案的脊型波导DFB激光二极管的透视图。与第四实施方案的激光二极管的脊型波导DFB相比,第五实施方案的脊型波导DFB激光二极管的副衍射光栅的结构与第四实施方案的不同,而其它结构相同。

在第五实施方案中,设置在脊部61的两侧的副衍射光栅62A的两个部分的相位相匹配。副衍射光栅62A的周期为400nm,构成副衍射光栅62A的每个凸形部分的高度为100nm,并且每个凸形部分沿着脊部61的延伸方向的尺寸为200nm。也就是说,副衍射光栅62A的占空比为50%。可以将该占空比设定在35至65%的范围内。

如在根据在图1至3中所示的第一实施方案的脊型波导DFB激光二极管的副衍射光栅12的情况中一样,根据第五实施方案的脊型波导DFB激光二极管的副衍射光栅62A提高了高次横模的传播损失。因此可以抑制高次横模的振荡。

图14为根据第六实施方案的脊型波导DFB激光二极管的透视图。与第四实施方案的脊型波导DFB激光二极管相比,第六实施方案的脊型波导DFB激光二极管的衍射光栅的结构与第四实施方案的不同,而其它结构相同。

在第六实施方案中,设置在脊部61的两侧的副衍射光栅62B的两个部分的相位匹配。副衍射光栅62B的周期为200nm,并且构成副衍射光栅62B的每个凸形部分的高度为100nm,并且每个凸形部分沿着脊部61的延伸方向的尺寸为100nm。也就是说,副衍射光栅62B的占空比为50%。与主衍射光栅60相比,副衍射光栅62B的折射率的周期性结构偏移半个周期即100nm。

如在图9和10中所示的第三实施方案的脊型波导DFB激光二极管12B的情况中一样,第六实施方案的脊型波导DFB激光二极管的副衍射光栅62B可以提高高次横模的传播损失。因此可以抑制高次横模的振荡。

图15为根据第七实施方案的脊型波导DFB激光二极管的透视图。主衍射光栅109形成在n型InP衬底101的主表面上。厚度为0.1μm的n型GaInAsP光波导层103形成在形成有主衍射光栅109的衬底101的主表面上。量子阱活性层103具有与在图11中所示的第四实施方案的脊型波导DFB激光二极管的量子阱层53相同的结构。

在量子阱活性层103上形成有厚度为0.1μm的p型GaInAsP上包覆层104。在上光导层104的上表面上形成有副衍射光栅110。在副衍射光栅110上形成有p型InP上包覆层105。上包覆层105由覆盖着整个衬底表面的薄膜形部分和形成在其上并且沿着一个方向延伸的脊部111构成。薄膜形部分的厚度为0.1μm,并且脊部111的高度为1.2μm,而且其宽度为2μm。

在脊部111上形成有p型GaInAs接触层106。在接触层106上形成有p侧电极107,并且在衬底101的底面上形成有n侧电极。

主衍射光栅109和副衍射光栅具有周期性结构,即折射率沿着脊部111的延伸方向周期性变化。主衍射光栅109正好设置在脊部111下方,并且设置在位于脊部111的两侧的区域中。副衍射光栅110设置在位于脊部111的两侧的区域中,但没有正好设置在脊部111下方。

主衍射光栅109的周期为200nm,并且从构成主衍射光栅109的凹形部分的底部到凸形部分的上表面的高度为50nm。占空比为50%。副衍射光栅110的周期为400nm,并且构成副衍射光栅110的每个凸形部分的高度为100nm,并且其沿着脊部111的延伸方向的尺寸为200nm。也就是说,占空比为50%。副衍射光栅110的占空比可以设定在35%至65%的范围内。

在脊部111下面的量子阱活性层103用作使光沿着脊部111的延伸方向传播的光波导。由于主衍射光栅109正好设置在脊部111下面,所以在光波导中传播的光的基横模与主衍射光栅109强耦合。由于副衍射光栅110没有正好设置在脊部111下方,所以基横模与副衍射光栅110弱耦合。高次横模与主衍射光栅109和副衍射光栅110两者强耦合。

因此,如在根据在图1至3中所示的第一实施方案的脊型波导DFB激光二极管的副衍射光栅12的情况中一样,根据第七实施方案的脊型波导DFB激光二极管的副衍射光栅110提高了高次横模的传播损失。因此可以抑制高次横模的振荡。

接着,参照图16A至16E,将对用于第七实施方案的脊型波导DFB激光二极管的制造方法进行说明。

如图16A所示,通过干涉曝光或电子束曝光在n型InP衬底101的主表面上形成抗蚀剂图案120。该抗蚀剂图案120具有与构成在图15中所示的主衍射光栅109的凸形部分相对应的平面形状。通过使用抗蚀剂图案120作为掩模,对衬底101的表面层进行干法蚀刻。在蚀刻之后,去除抗蚀剂图案120。

如图16B中所示,这样就在衬底10的主表面上形成主衍射光栅109,该主衍射光栅由在没有被抗蚀剂图案120覆盖的区域中的凹形部分和位于凹形部分之间的凸形部分构成。

如图16C所示,例如通过MOVPE在形成有主衍射光栅109的衬底101的主表面上顺序生长出n型GaInAsP下光导层102、量子阱活性层103、p型GaInAsP上光导层104。在上光导层104上形成具有与构成在图15中所示的副衍射光栅的凸形部分相对应的平面形状的抗蚀剂图案121。可以通过干涉曝光或电子束曝光和通常的紫外线曝光的组合来形成抗蚀剂图案121。通过使用抗蚀剂图案121作为掩模,蚀刻出上光导层104的表面层。在蚀刻之后,去除抗蚀剂图案121。

如图16D所示,这样就在上光导层104的表面上形成了副衍射光栅110。

如图16E所示,通过MOVPE在形成有副衍射光栅110的上光波导层104的表面上生长出p型InP上包覆层105和p型GaInAs接触层106。在接触层106上形成氧化硅掩模图案122。该掩模图案122具有与在图15中所示的脊部111对应的平面形状。

通过使用掩模图案122作为掩模,对接触层106进行干法蚀刻,并且将上包覆层105蚀刻至一定深度。在蚀刻之后,去除掩模图案122。

这样就形成了脊部111,并且在上面留下了接触层106,如图15所示。通过剥离法在接触层106上形成p侧电极107,并且在衬底101的底面上形成n侧电极108。

图17为根据第八实施方案的脊型波导DFB激光二极管的透视图。与第七实施方案的脊型波导DFB激光二极管相比,第八实施方案的脊型波导DFB激光二极管的副衍射光栅的结构与第七实施方案的不同,而其它结构相同。

在第八实施方案中,设置在脊部111的两侧的副衍射光栅110A的两个部分的周期为400nm,并且占空比为25%。可以将该占空比设定为15至35%或者设定为65至85%。副衍射光栅110A的两个部分的相位偏移了主衍射光栅109的半个周期,即相差100nm。

如在根据在图7和8中所示的第二实施方案的脊型波导DFB激光二极管的副衍射光栅12A的情况中一样,根据第八实施方案的脊型波导DFB激光二极管的副衍射光栅110A增大了高次横模的传播损失。因此可以抑制高次横模的振荡。

图18为根据第九实施方案的脊型波导DFB激光二极管的透视图。与第七实施方案的脊型波导DFB激光二极管相比,第九实施方案的脊型波导DFB激光二极管的副衍射光栅的结构与第七实施方案的不同,而其它结构相同。

在第九实施方案中,设置在脊部111的两侧的副衍射光栅的两个部分的周期为200nm,并且占空比为50%。副衍射光栅110B的折射率分布相对于主衍射光栅109偏移半个周期,即偏移100nm。

如在根据在图9和10中所示的第三实施方案的脊型波导DFB激光二极管的副衍射光栅12B的情况中一样,根据第九实施方案的脊型波导DFB激光二极管的副衍射光栅110B提高了高次横模的传播损失。因此可以抑制高次横模的振荡。

在第七至第九实施方案中,主衍射光栅109、量子点活性层103和副衍射光栅110从衬底侧开始按照这个顺序排列。这三个组成元件可以按照不同的顺序排列。例如,可以依次设置副衍射光栅、量子阱活性层和主衍射光栅,主衍射光栅和副衍射光栅两者都可以设置在量子阱活性层的衬底侧,或者主衍射光栅和副衍射光栅两者都可以设置在量子阱活性层的上方。

接下来将参照图19A至19F对第十实施方案的埋入式异质结构激光二极管的制造方法进行说明。

如图19A所示,在p型InP衬底151的主表面上形成量子阱活性层152。量子阱活性层152具有与在图11中所示的第四实施方案的脊型波导DFB激光二极管的量子阱活性层53相同的结构。通过MOVPE在量子阱活性层上形成厚度为0.1μm的p型GaInAsP上光导层153。通过干涉曝光或电子束曝光在上光导层153上形成用于形成主衍射光栅的抗蚀剂图案180。该抗蚀剂图案180具有一种条形平面形状,即宽度为100nm的多个带状图案以100nm的规则间隔排列。

通过使用抗蚀剂图案180作为掩模,对上光导层153的表面层进行蚀刻。在蚀刻之后,去除抗蚀剂图案180。

如图19B所示,这样就在上光导层153的表面上形成了主衍射光栅170,该主衍射光栅170由深度为50nm并且形成在没有被抗蚀剂图案180覆盖的区域中的凹形部分和位于凹形部分之间的凸形部分构成。该主衍射光栅170的周期为200nm,并且其占空比为50%。

如图19C所示,通过MOVPE在形成有主衍射光栅170的上光导层153上形成厚度为0.25μm的p型InP上包覆层154。

在上光导层154上形成氧化硅掩模图案181。该掩模图案181沿着与主衍射光栅170的周期性方向平行的方向延伸,并且在其两个侧缘上具有周期性凹形和凸形部分,以便形成副衍射光栅。凹形和凸形部分的周期为400nm,从凹形部分的底部到凸形部分的上表面的高度为250nm,并且占空比为50%。可以将占空比设定为35至65%。在一个侧缘上的凸形部分位于与另一个侧缘的凸形部分对应的位置处。

通过使用掩模图案181作为掩模,对上光导层153和量子阱活性层152进行干法蚀刻,并且蚀刻衬底151的表面层。

如图19D所示,这样就在衬底151上留下脊部172,该脊部172具有由量子阱活性层152、上光导层153和上包覆层154构成的层叠结构。这样就在脊部172的两个侧面上形成了副衍射光栅171。该副衍射光栅171具有一种周期性结构,即沿着脊部172的高度方向延伸的凸形和凹形部分沿着脊部172的纵向方向交替排列。

如图19E所示,通过MOVPE在位于脊部172的两侧的平面上顺序地并且选择性地形成p型InP第一电流限制层160、n型InP第二电流限制层161和p型InP第三电流限制层。之后去除掩模图案181。

如图19F所示,通过MOVPE在上包覆层154即脊部172的最上层上并且在第三电流限制层162上顺序生长出p型InP上包覆层165和p型GaInAs接触层166。通过剥离法在接触层166上形成p侧电极168,并且在衬底151的底面上形成n侧电极169。

设置在脊部172中的量子阱活性层152用作使光沿着脊部172的纵向方向传播的光波导。

在第十实施方案的埋入式异质结构激光二极管中,主衍射光栅170设置在沿着用作光波导的量子阱活性层152的宽度方向的整个区域上。副衍射光栅171没有设置在沿着光波导的宽度方向的中央区域中,而是只是设置在光波导的两侧。因此,沿着光波导传播的光的基横模与主衍射光栅170强耦合,并且基横模与副衍射光栅171弱耦合。高次横模与主衍射光栅170和副衍射光栅171都强耦合。主衍射光栅170不是必须设置在光波导沿宽度方向的整个区域中,而是可以设置在局部区域,包括沿宽度方向的中央区域中。

如在根据在图1至3中所示的第一实施方案的脊型波导DFB激光二极管的副衍射光栅12的情况中一样,根据第十实施方案的埋入式异质结构激光二极管的副衍射光栅171增大了高次横模的传播损失。因此可以抑制高次横模的振荡。

图20为一透视图,显示出根据第十一实施方案的在制造期间的埋入式异质结构激光二极管。在该第十一实施方案的埋入式异质结构激光二极管中,对图19D中所示的第十实施方案的埋入式异质结构激光二极管的副衍射光栅171的结构进行了改进。

在该第十一实施方案中,设置在脊部172的两个侧面上的副衍射光栅171A的两个部分的相位偏移主衍射光栅170的半个周期,即相差100nm。副衍射光栅171A的周期为400nm,并且占空比为15至35%或者为65至85%。

如在根据在图7和8中所示的第二实施方案的脊型波导DFB激光二极管的副衍射光栅12A的情况中一样,第十一实施方案的埋入式异质结构激光二极管的副衍射光栅171A增大了高次横模的传播损失。因此可以抑制高次横模的振荡。

图21为一透视图,显示出根据第十二实施方案的在制造期间的埋入式异质结构激光二极管。第十二实施方案的埋入式异质结构激光二极管对图19D中所示的第十实施方案的埋入式异质结构激光二极管的副衍射光栅171的结构进行了改进。

第十二实施方案的副衍射光栅171B具有与主衍射光栅170相同的周期。折射率分布的周期性结构相对于主衍射光栅170偏移半个周期即100nm。副衍射光栅171B的占空比为35至65%。

如在根据在图9和10中所示的第三实施方案的脊型波导DFB激光二极管的副衍射光栅12C的情况中一样,根据第十二实施方案的埋入式异质结构激光二极管的副衍射光栅171B增大了高次横模的传播损失。因此可以抑制高次横模的振荡。

在第十至第十二实施方案中,虽然主衍射光栅设置在量子阱活性层152上方,但是主衍射光栅也可以设置在量子阱活性层152下方。

在第一至第十二实施方案的任一个中,光按照这样一种方式与主衍射光栅和副衍射光栅耦合:使得在设有主衍射光栅和副衍射光栅两者时在光波导中传播的光的二次横模的传播,与在只设有主衍射光栅时在光波导中传播的光的二次横模的传播相比,受到更大程度的抑制。

图22为一透视图,显示出根据第十三实施方案的脊型波导DFB激光二极管。在下面的说明书中,着重给出了与根据在图5中所示的第一实施方案变型的脊型波导DFB激光二极管不同的地方。

在第一实施方案的变型中,虽然副衍射光栅12形成在位于脊部10的两侧的平面上,但是在第十三实施方案中,没有形成副衍射光栅12。其它结构与根据第一实施方案的变型的脊型波导DFB激光二极管的相同。第十三实施方案的脊型波导DFB激光二极管可以通过只形成用于主衍射光栅的抗蚀剂图案8a而不形成在图4C中所示的用于副衍射光栅的抗蚀剂图案8b来制造出。

如在第一实施方案的变型的情况中一样,第十三实施方案也可以增大在光和主衍射光栅11之间的耦合系数κ。上光导层5可以省略,并且可以将上包覆层6直接设置在活性层4上。

在第十三实施方案中,由于没有设置副衍射光栅,所以与第一实施方案的变型相比,高次横模更容易振荡。如果高次横模的振荡表现得很严重,则可以通过使脊部10的宽度变窄来抑制高次横模的振荡。

图23为根据第十四实施方案的激光二极管的示意性剖视图。虽然第一至第十二实施方案的激光二极管为分布反馈(DFB)激光二极管,但是第十四实施方案的激光二极管为分布式布拉格反射器(DBR)激光二极管。

在第十四实施方案的DBR激光二极管中,布拉格反射器区域201设置在放大区域200沿着光传播方向的两侧上。从电极202和203将载流子注入到放大区域200中。将衍射光栅205设置在布拉格反射器区域201中以反射光。每个衍射光栅205包括第一至第十二实施方案中任一个的激光二极管的主衍射光栅和副衍射光栅。

由于在布拉格反射器区域201中的衍射光栅205增大了高次横模的传播损失,所以可以抑制高次模式的振荡。

如在第一至第三和第十三实施方案的脊型波导DFB激光二极管的衍射光栅的情况中一样,在第十四实施方案中,优选的是,如果衍射光栅设置在波导层的上方,则设置在布拉格反射器区域201的波导层(与在放大区200中的活性层相同的层)的衬底侧的介质的折射率被设定为低于设置在活性层4上方的脊介质的折射率。如在图5所示的第一实施方案变型和图22所示的第十三实施方案的情况中一样,该折射率分布可以增大在光和衍射光栅之间的耦合系数κ。

在这些实施方案的激光二极管中,GaAs、AlGaAs、InGaAs、InAs、InP、AlGaInAs、GaInAsP等用作衬底、包覆层、光波导层、活性层等的材料。也可以采用其它化合物半导体材料。例如,在第一至第三实施方案中,包含有InAs量子点的活性层形成在GaAs衬底上。在第四至第十二实施方案中,AlGaInAs量子阱活性层形成在InP衬底上。代替的是,可以将量子阱活性层形成在GaAs衬底上,并且可以将量子点活性层形成在InP衬底上。

在这些实施方案中,虽然副衍射光栅由半导体制成,但是也可以采用其它材料。例如,副衍射光栅可以由金属例如Cr制成。

在采用n型衬底的实施方案中,代替n型衬底可以采用p型衬底。如果采用p型衬底,形成在活性层上方的光导层、包覆层等由n型材料制成。可以采用半绝缘衬底,或者可以采用粘接衬底,该粘接衬底具有硅衬底和粘接在硅衬底上的由希望的材料制成的底层衬底。

在第一至第十二实施方案的激光二极管中所采用的主副衍射光栅的应用领域不限于激光二极管。配备有主副衍射光栅的光波导提供了增大与主衍射光栅耦合的高次横模光的损失并且优先传播基横模的功能。

上面参照优选实施方案对本发明进行了说明。本发明不仅仅局限于上面的实施方案。对于本领域普通技术人员而言显而易见的是,可以作出其它各种变型、改进、组合等。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号