首页> 中国专利> 一种用于调控炭膜气体分离性能的磁场干预成膜方法

一种用于调控炭膜气体分离性能的磁场干预成膜方法

摘要

本发明属于化学工程学科中的传质与分离领域,涉及一种用于调控炭膜气体分离性能的磁场干预成膜方法,通过在炭膜制备过程中的制膜液配制、固化成膜及炭化三个步骤之一的固化成膜步骤引入外加磁场的干预作用,实现对炭膜气体分离性能进行调控的目的。本发明的效果和益处是提供一种调控炭膜气体分离性能的新方法。该方法有望为提高炭膜的性价比做出贡献,同时也为炭膜的功能化制备及在特定领域的应用奠定基础。因此,这种用于调控炭膜气体分离性能的磁场干预成膜方法的推广应用将会推动新型膜分离技术的发展与工业化应用。

著录项

  • 公开/公告号CN103846017A

    专利类型发明专利

  • 公开/公告日2014-06-11

    原文格式PDF

  • 申请/专利权人 沈阳工业大学;

    申请/专利号CN201210496233.6

  • 申请日2012-11-29

  • 分类号B01D71/02(20060101);B01D67/00(20060101);B01D53/22(20060101);

  • 代理机构沈阳智龙专利事务所(普通合伙);

  • 代理人宋铁军;周楠

  • 地址 110870 辽宁省沈阳市经济技术开发区沈辽西路111号

  • 入库时间 2024-02-19 23:10:49

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-25

    授权

    授权

  • 2015-08-26

    实质审查的生效 IPC(主分类):B01D71/02 申请日:20121129

    实质审查的生效

  • 2014-06-11

    公开

    公开

说明书

技术领域

本发明涉及一种用于调控炭膜气体分离性能的磁场干预成膜方法,属于化学工程学科中的传质与分离领域。

背景技术

炭膜是一种高效、节能、操作方便、耐热、耐腐蚀、使用寿命长及分离性能高的多孔无机分离膜。因其在很多领域存在巨大的潜在应用前景,所以吸引了越来越多研究者的青睐(Bauer JM, et al. Key Engineering Materials, 1991:207-212.; Shah TN, et al. Journal of Membrane Science, 295(2007): 40-49.; 张兵, 等. 中国发明专利, ZL201010118376)。炭膜通常是在惰性或真空环境下,经炭化含碳物质制备而成。研究表明炭膜的分离性能与制备过程中的很多因素都有关:包括前躯体材料(Saufi SM, Ismail AF. Carbon, 42(2004): 241–259.),炭化条件及制膜方法(Centeno TA, et al. Journal of Membrane Science,228(2004): 45-54.; Shiflett MB, et al. Science, 285(1999): 1902-1905.)。为了改善炭膜的气体分离性能,研究者先后开发了诸多调控方法,如向前躯体中掺杂或引入易挥发的小分子或易分解的有机物(Tin PS, et al. Ind. Eng. Chem. Res., 43(2004): 6476-6483.)、侧链或悬挂官能团(Yoshimune M, et al. Carbon, 45(2007): 553-560.)、无机粒子或无机盐(王同华,刘庆岭,邱介山. 中国发明专利,ZL200510200871.9; Park HB, et al. J. Membr. Sci., 235(2004): 87–98.)等。最近,研究也发现制膜液在固化成膜过程的控制对最终炭膜的气体分离性能有显著的影响。Fuertes等考察了固化成膜过程中的温度和湿度等条件(Fuertes A B, et al. Microporous Mesoporous Mater., 33 (1999): 115-125.)。Tin等人在制膜液中加入醇类非溶剂影响前驱体高分子的物理性质及固化成膜速度,使得最终炭膜对O2/N2 和CO2/CH4的选择性分别由未经过预处理的6.4和78提高到8.8和88(Tin P S, et al. Microporous Mesoporous Mater., 73 (2004):151-160.)。Shao等人发现制膜液中的溶剂对炭膜的结构和气体分离性能也存在显著影响,溶剂与前驱体溶解度参数相差大的有利于提高渗透性,反之则有利于选择性(Shao L, et al. J. Membr. Sci., 244 (2004):77–87.)。庞婧等人考察了NMP , CHCl3, C2H2Cl4, DMAc四种溶剂在制备炭膜时因影响了前驱体的溶解度和固化成膜过程中的溶剂挥发,从而影响了最终炭膜的结构和气体分离性能(庞婧,等. 高等学校化学学报,32 (2011): 143-149.)。另外,他们也发现干燥方式(如冷冻干燥和冷藏干燥法)也会因影响制膜液中的前驱体分子结构及溶剂蒸发过程,从而最终影响到炭膜的气体分离性能(庞婧,等. 无机材料学报, 26 (2011): 165-169)。这些研究工作都为炭膜在理论和日后工业应用上奠定了重要基础。

虽然炭膜在各方面均比传统聚合物膜存在无法比拟的优点,炭膜研究也已取得许多显著成果,但经过几十年发展,仍处于实验室阶段,未实现工业应用。限制炭膜发展的瓶颈问题是性价比低导致的市场竞争力小。因此,在现有基础上,寻找新型高效的炭膜制备方法是从根本上提高炭膜的气体分离性能,解决炭膜发展所面临难题的必经之路。本发明人经过深入研究发现在炭膜制备过程中引入磁场干预,可实现对炭膜微观结构和气体分离性能进行调控的目的。通过优化前驱体、制膜液、固化成膜及炭化,可获得具有良好气体分离性能的炭膜。因此,研究开发用于调控炭膜气体分离性能的磁场干预成膜方法将会极大地推动炭膜的发展与工业化应用。

发明内容

发明目的:

本发明涉及一种用于调控炭膜气体分离性能的磁场干预成膜方法,通过制膜液配制、固化成膜及炭化三个步骤,最终得到可用于气体分离的炭膜,实现对炭膜气体分离性能进行调控的目的。

技术方案:

一种用于调控炭膜气体分离性能的磁场干预成膜方法,其特征在于:是以制膜液配制、固化成膜及炭化三个步骤构成,实现对炭膜气体分离性能的调控;步骤如下:

(1)制膜液配制:选择聚合物或聚合物与磁性粉末混合物作为前驱体,将前驱体与溶剂混合,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的均匀溶液或混合物,即为制膜液;

(2)固化成膜:将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状;控制玻璃板表面温度,待溶剂蒸发,使玻璃表面上的制膜液从液态逐渐固化而转变成固态,得到固态聚合物膜或聚合物与磁性粉末复合膜;

(3)炭化:将得到的固态聚合物膜或聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,降至室温后,得到具有气体分离性能的炭膜。

所采用的聚合物为聚酰亚胺、聚糠醇、酚醛树脂、聚丙烯腈或纤维素中的一种。

磁性粉末种类为镍粉、铁氧体、二茂铁、钕铁硼、羟基铁粉、(Mn, Zn) Fe2O4、( Ni, Zn) Fe2O4、Nb(Ta)- Ni- Fe、Fe3O4、γ-Fe2O3中的一种;磁性粉末平均粒径为0.1~10μm;磁性粉末用量占制膜液量质量百分数为0.1%~10%。

所用溶剂为氮氮二甲基甲酰胺、氮氮二甲基乙酰胺、氮甲基吡咯烷酮、三氯甲烷、乙醇或丙酮中的一种;制膜液质量浓度为2%~50%;超声波功率为100~1500W;超声波时间为0.5~60 min;搅拌转数为100~1500转/min,搅拌时间为0.5~48h。

固化成膜时磁场均匀度为1%~30%;磁场强度为5~1000 Gs;玻璃板温度为10~200℃;溶剂蒸发时间为2~48 h。

惰性气体种类有氮气、氩气或氦气;真空环境为0.01 Pa~20 Pa;炭化终温为500~1000℃;炭化终温恒温时间为0~8 h。

优点及效果:

本发明提出了一种用于调控炭膜气体分离性能的磁场干预成膜方法,具有如下优点:

采用本发明的技术方案,实现了通过外加磁场干预并调控炭膜制备过程与炭膜微观结构,为实现炭膜气体分离性能的改善提供了一种新方法。该方法有望为提高炭膜的性价比做出贡献,同时也为炭膜的功能化制备及在特定领域的应用奠定基础。因此,这种用于调控炭膜气体分离性能的磁场干预成膜方法的推广应用将会推动新型膜分离技术的发展与工业化应用。

具体实施方式:

下面结合具体的实施例对本发明做进一步的说明,但本发明的保护范围不受实施例的限制。

具体实施方式1:

一种用于调控炭膜气体分离性能的磁场干预成膜方法,是以制膜液配制、固化成膜及炭化三个步骤构成,实现对炭膜气体分离性能进行调控的目的;步骤如下:

选择聚酰亚胺、聚糠醇、酚醛树脂、聚丙烯腈或纤维素中的一种作为前驱体。选择氮氮二甲基甲酰胺、氮氮二甲基乙酰胺、氮甲基吡咯烷酮、三氯甲烷、乙醇或丙酮中的一种作为溶剂。制膜液质量浓度为2%~50%的比例将前驱体与溶剂混合在一起。经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的均匀溶液或混合物即制膜液。

其中,所选用的超声波功率为100~1500W;超声波时间为0.5~60 min;搅拌转数为100~1500转/min,搅拌时间为0.5~48h。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜,得到固态聚合物膜。其中,磁场均匀度为1%~30%;磁场强度为5~1000 Gs;玻璃板温度为10~200℃;溶剂蒸发时间为2~48 h。

将得到的固态聚合物膜,在惰性气体或真空环境下炭化,降至室温后,取出得到具有气体分离性能的炭膜。其中,惰性气体种类有氮气、氩气、氦气;真空环境为0.01 Pa~20 Pa;炭化终温为500~1000℃;炭化终温恒温时间为0~8 h。

具体实施方式2:

一种用于调控炭膜气体分离性能的磁场干预成膜方法,是以制膜液配制、固化成膜及炭化三个步骤构成,实现对炭膜气体分离性能进行调控的目的;步骤如下:

将聚合物聚酰亚胺、聚糠醇、酚醛树脂、聚丙烯腈或纤维素中的一种与平均粒径为0.1~10 μm的镍粉、铁氧体、二茂铁、钕铁硼、羟基铁粉、(Mn, Zn) Fe2O4、(Ni, Zn) Fe2O4、Nb(Ta)- Ni- Fe、Fe3O4、γ-Fe2O3中的一种混合,作为前驱体。选择氮氮二甲基甲酰胺、氮氮二甲基乙酰胺、氮甲基吡咯烷酮、三氯甲烷、乙醇或丙酮中的一种作为溶剂。按照磁性粉末质量浓度(磁性粉末用量占制膜液量质量百分数)为0.1%~10%,制膜液质量浓度为2%~50%的比例将前驱体与与溶剂混合在一起。经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的均匀溶液或混合物即制膜液。

其中,所选用的超声波功率为100~1500W;超声波时间为0.5~60 min;搅拌转数为100~1500转/min,搅拌时间为0.5~48h。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜,得到固态聚合物与磁性粉末复合膜。其中,磁场均匀度为1%~30%;磁场强度为5~1000 Gs;玻璃板温度为10~200℃;溶剂蒸发时间为2~48 h。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,降至室温后,取出得到具有气体分离性能的炭膜。其中,惰性气体种类有氮气、氩气、氦气;真空环境为0.01 Pa~20 Pa;炭化终温为500~1000℃;炭化终温恒温时间为0~8 h。

实施例1:

选择聚酰亚胺与磁性粉末混合物作为前驱体,选择氮氮二甲基乙酰胺(DMAc)或氮甲基吡咯烷酮(NMP)中的一种作为溶剂。将聚合物与磁性粉末加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其中,具体制备条件及所得炭膜的气体分离性能数据如表1所示。

表1 聚酰亚胺基炭膜的制备条件及气体渗透性数据

 实施例2:

选择聚糠醇与磁性粉末混合物作为前驱体,选择丙酮作为溶剂。将聚合物与磁性粉末加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其中,具体制备条件及所得炭膜的气体分离性能数据如表2所示。

表2聚糠醇基炭膜的制备条件及气体渗透性数据

实施例3:

选择酚醛树脂与磁性粉末混合物作为前驱体,选择乙醇作为溶剂。将聚合物与磁性粉末加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其中,具体制备条件及所得炭膜的气体分离性能数据如表3所示。

表3酚醛树脂基炭膜的制备条件及气体渗透性数据

实施例4:

选择聚丙烯腈与磁性粉末混合物作为前驱体,选择氮氮二甲基甲酰胺作为溶剂。将聚合物与磁性粉末加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其中,具体制备条件及所得炭膜的气体分离性能数据如表4所示。

表4聚丙烯腈基炭膜的制备条件及气体渗透性数据

实施例5:

选择纤维素与磁性粉末混合物作为前驱体,选择三氯甲烷作为溶剂。将聚合物与磁性粉末加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物与磁性粉末复合膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其中,具体制备条件及所得炭膜的气体分离性能数据如表5所示。

表5纤维素基炭膜的制备条件及气体渗透性数据

实施例6:

选择聚糠醇作为前驱体,选择丙酮作为溶剂,将聚糠醇加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其它具体制备条件及所得炭膜的气体分离性能数据如表2所示。

实施例7:

选择聚丙烯腈作为前驱体,选择氮氮二甲基甲酰胺作为溶剂,将聚丙烯腈加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其它具体制备条件及所得炭膜的气体分离性能数据如表4所示。

实施例8:

选择纤维素作为前驱体,选择三氯甲烷作为溶剂,将纤维素加入到溶剂中,经溶解或超声波分散或搅拌或加热方式中的一种或几种形成具有流动性的制膜液。

将制膜液浇注在置于磁场中的水平玻璃板表面,形成液态膜状。控制玻璃板表面的温度,让溶剂蒸发,使玻璃表面上的液态膜逐渐固化而转变成固态膜。

将得到的固态聚合物膜,在惰性气体或真空环境下炭化,得到具有气体分离性能的炭膜。其它具体制备条件及所得炭膜的气体分离性能数据如表5所示。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号