首页> 外文OA文献 >Fluid-structure interaction of a wind turbine blade employing a refined finite element model coupled with a blade-element momentum method
【2h】

Fluid-structure interaction of a wind turbine blade employing a refined finite element model coupled with a blade-element momentum method

机译:风力涡轮机叶片的流体 - 结构相互作用采用精细的有限元模型和叶片 - 动量方法

摘要

Typically the aero-elastic simulation tools that are used in industry employ simple beam models to represent the blades of a wind turbine. The aerodynamic loads are usually calculated using a fast blade-element momentum (BEM) method. These models allow relatively fast calculation of the aero-elastic behavior of the blade which is required in order to allow the simulation of a large number of load cases as required by the IEC 61400 [1] and GL [2] standards in a feasible amount of time. Such beam models do however not incorporate the level of detail required to provide the complete stress and strain distribution in the blade, nor are they able to take into account nonlinear effects such as the change in cross-section of the blade due to the brazier effect [3]. Alternatively, highly detailed 3d computational fluid dynamics (CFD) simulations can be coupled with refined finite element (FE) models to obtain highly accurate results both regarding the flow around the blade as regarding the stress and strain distribution within the structure. However, the computational cost of such a simulation is enormous. In this work a coupling has been developed between the BEM code HAWC2-aero, which was developed by DTU [4] and the Abaqus FE solver. This allows a fluid-structure interaction (FSI) simulation by means of a so-called “weak” coupling, meaning that the two different solvers are run sequentially in iterations until convergence is achieved. In this way, a refined structural model is coupled with a fast aerodynamics tool, allowing steady-state fluid-structure interaction (FSI) simulations at an acceptable computational cost. The more advanced structural model allows the investigation of the influence of structural properties such as individual composite plies as well as their positioning, orientation and materials on the aero-elastic behavior of the blade. The influence of non-linear effects on the blade’s aero-elastic behavior can also be analyzed.The finite element model is used to locate stress hot-spots or buckling effects. Loads were applied using two different methods. One method uses distributing couplings to spread the load of a spanwise cross-section over all the nodes on that section. The other method uses concentrated forces at specific nodes to introduce the loads.
机译:通常,工业中使用的气动弹性仿真工具采用简单的梁模型来表示风力涡轮机的叶片。通常使用快速叶片要素动量(BEM)方法计算空气动力学载荷。这些模型允许相对快速地计算叶片的空气弹性行为,这是必需的,以便以可行的数量模拟IEC 61400 [1]和GL [2]标准所要求的大量载荷工况时间。然而,这样的梁模型没有包括在叶片中提供完整的应力和应变分布所需的详细程度,也不能考虑非线性效应,例如由于火盆效应而导致的叶片横截面变化。 [3]。或者,可以将高度详细的3d计算流体动力学(CFD)模拟与精致的有限元(FE)模型结合使用,以获得有关叶片周围流动以及结构内应力和应变分布的高精度结果。但是,这种模拟的计算成本很高。在这项工作中,已经开发了由DTU [4]开发的BEM代码HAWC2-aero与Abaqus FE解算器之间的耦合。这允许通过所谓的“弱”耦合进行流固耦合(FSI)模拟,这意味着两个不同的求解器会依次迭代运行,直到实现收敛为止。这样,经过改进的结构模型与快速的空气动力学工具相结合,可以以可接受的计算成本进行稳态的流体-结构相互作用(FSI)模拟。更高级的结构模型允许研究结构特性(例如单个复合层)及其位置,方向和材料对叶片气弹性能的影响。还可以分析非线性效应对叶片气动弹性行为的影响。有限元模型用于定位应力热点或屈曲效应。使用两种不同的方法施加载荷。一种方法是使用分布耦合在整个截面上的所有节点上分布翼展方向截面的载荷。另一种方法是在特定节点上使用集中力来引入载荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号