首页> 外文OA文献 >Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods
【2h】

Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

机译:间断Galerkin方法的最优保强稳定性Runge-Kutta时间离散

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.
机译:不连续的Galerkin(DG)空间离散化通常用于线法方法中,具有明确的强稳定度(SSP)Runge-Kutta(RK)时间步进器,用于双曲线守恒律的数值解。在这种方法中采用的时间步长必须满足Courant–Friedrichs–Lewy稳定性约束,该约束取决于RK方法的绝对稳定性区域和SSP系数。尽管针对后者优化了现有的SSPRK方法,但实际上,在RKDG稳定性的情况下,前者对时间步长产生了更严格的约束。因此,在这项工作中,我们提出了带有稳定区域的新的“经DG优化”的SSPRK方法的开发,该方法专门设计用于在一个空间维度上最大化给定阶数的RKDG方法的稳定时间步长。这些新方法代表了在计算效率方面最好的可用RKDG方法,与使用现有SSPRK时间步进器的方法相比已有显着改进,该方法已针对SSP系数进行了优化。提出了多达八个阶段的二阶,三阶和四阶方法,并通过将其应用于数值测试案例来验证了它们的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号