首页> 外文OA文献 >LINKING DYNAMIC BEHAVIOUR VARIABILITY OF THERMOPLASTIC HONEYCOMB BEAMS TO THEIR DESIGN PARAMETER VARIABILITY: A STOCHASTIC APPROACH
【2h】

LINKING DYNAMIC BEHAVIOUR VARIABILITY OF THERMOPLASTIC HONEYCOMB BEAMS TO THEIR DESIGN PARAMETER VARIABILITY: A STOCHASTIC APPROACH

机译:将热塑蜂窝梁的动态行为变异性与其设计参数变异性联系起来:一种随机方法

摘要

Honeycomb panels are sandwich structures with a high specific strength and stiffness, together with a low areal mass. They are complex but regular structures with a high number of design parameters that govern their dynamic behaviour.A first part of this paper gives an overview of the various design parameters that govern the dynamic behaviour of freely suspended Thermoplastic Honeycomb beams with a glass fibre reinforced skin. The considered dynamic behaviour of the honeycomb sandwich beams is in fact a stochastic process, governed by a set of parameters, each having some kind of randomness. By means of a suitable Finite Element model two independent elastic material properties are selected from the total set of design parameters, namely the Young’s modulus of the skin in length direction and the out of plane core shear modulus. These two parameters are important factors in governing the resonance behaviour of the considered honeycomb sandwich beams. The goal of this paper is to describe the relation between the variability of these material constants and the experienced variability in the Frequency Response Functions at 17 measurement points on each beam sample. These functions are experimentally determined for a set of 22 honeycomb samples. The variability of the two material constants is split into alleatory and epistemic uncertainty. Alleatory uncertainty arises from the inherent physical variability of the design parameters of interest. Epistemic uncertainty arises from the fact that only limited experimental data is available for a statistical evaluation. Therefore these independent parameters are considered as Random Fields. Each Random Field is described in terms of a Karhunen – Loève series expansion with a Polynomial Chaos decomposition of its random coefficients. The physical realisations of these Random Fields are the quantities of these two parameters at the 17 measurement points. The inverse problem to determine these realisations is solved by means of a direct model updating of the Finite Element model using the measured Frequency Response Functions. The paper outlines the implementation of the Random Field method along with its extension to estimate the epistemic uncertainty. The errors that occur during the whole process of Experimental Modal Analysis may lead to a certain variability which is not physically related to the design parameter variability of interest. The way how this is addressed in the study is also outlined in the paper. As a result of this study the unknown probability distributions of two important design parameters at the 17 considered measurement locations are estimated, including an estimation of the uncertainty due to the lack of sufficient statistical data.
机译:蜂窝板是具有高比强度和刚度以及低面质量的夹心结构。它们是复杂但规则的结构,具有大量控制其动态行为的设计参数。本文的第一部分概述了控制具有玻璃纤维增​​强蒙皮的自由悬浮热塑性蜂窝梁的动态性能的各种设计参数。 。蜂窝夹层梁的动态特性实际上是一个随机过程,受一组参数控制,每个参数都具有某种随机性。借助于合适的有限元模型,从设计参数的总集合中选择了两个独立的弹性材料属性,即蒙皮在长度方向上的杨氏模量和平面外核心剪切模量。这两个参数是控制所考虑的蜂窝夹层梁共振行为的重要因素。本文的目的是描述这些材料常数的变异性与每个光束样本上17个测量点处频率响应函数中经历的变异性之间的关系。这些功能是通过一组22个蜂窝样品的实验确定的。这两个物质常数的变异性分为变应性和认知不确定性。不确定的不确定性来自感兴趣的设计参数的固有物理可变性。认识上的不确定性源于以下事实,即只有有限的实验数据可用于统计评估。因此,这些独立的参数被视为随机字段。每个Karenen-Loève级数展开式都有其随机系数的多项式混沌分解来描述。这些随机场的物理实现是在17个测量点上这两个参数的数量。通过使用测得的频率响应函数对有限元模型进行直接模型更新,可以解决确定这些实现的反问题。本文概述了随机域方法的实现及其扩展,以估计认知不确定性。在实验模态分析的整个过程中发生的错误可能会导致一定的可变性,该可变性与目标设计参数的可变性在物理上不相关。本文还概述了如何在研究中解决该问题。这项研究的结果是,估计了在考虑的17个测量位置处两个重要设计参数的未知概率分布,包括由于缺乏足够的统计数据而导致的不确定性估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号