首页> 美国政府科技报告 >SITE-94. Estimated rates of redox-front migration in granitic rocks
【24h】

SITE-94. Estimated rates of redox-front migration in granitic rocks

机译:sITE-94。估计花岗岩中氧化还原 - 前移迁的速率

获取原文

摘要

Analytical models for the rate of migration of oxidizing groundwaters are derived based on the stationary-state approximation to coupled fluid flow and water-rock interaction, and are constrained by molar concentrations of ferrous silicate, oxide, and sulfide minerals in the granites and associated fractures comprising the host rock beneath Aespoe. Model results indicate that small amounts of ferrous minerals in Aespoe granites and fractures will retard the downward migration of oxidizing conditions that could be generated by infiltration of glacial meltwaters during periods of glacial maxima and retreat. Calculated front velocities are retarded relative to Darcy fluxes observed in conductive fracture zones at Aespoe (0.3 to 3 m/y) by factors ranging from 10(sup -3) to 10(sup -4). Corresponding times for the front to migrate 500 m vary from 5,100 to 4,400,000 years. Retardation efficiency depends on mineralogy and decreases in the order: fractures > altered granites > unaltered granite. The most conductive structures in these rocks are therefore the most efficient in limiting the rate of front migration. Periods of recharge during glaciation are comparable to times required for an oxidizing front to migrate to repository levels. This suggests an oxidizing front could reach repository depths during a single glacial-interglacial event. The persistence of oxidizing conditions could be relatively short lived, however, because reversal of flow conditions driven by the advance and retreat of ice sheets could cause reducing conditions to be restored. 27 refs. (Atomindex citation 28:038119)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号