首页> 美国政府科技报告 >Engine Gaseous, Aerosol Precursor and Particulated Flight Altitude Conditions
【24h】

Engine Gaseous, Aerosol Precursor and Particulated Flight Altitude Conditions

机译:发动机气体,气溶胶前体和颗粒飞行高度条件

获取原文

摘要

The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt & Whitney F1OO-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of O.3 by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T(sub 3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO2, NO, NOx, O2, total unburnt hydrocarbons (THC), and SO2. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System. A chemical ionization mass spectrometer from the Air Force Research Laboratory at Hanscom AFB was used to measure SO2 and HNO3. Aerodyne Research. Inc. used infrared tunable diode laser absorption to measure SO2, SO3, NO, H2O and CO2.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号