首页> 外文期刊>Journal of propulsion and power >Numerical Prediction of Gaseous Aerosol Precursors and Particles in an Aircraft Engine
【24h】

Numerical Prediction of Gaseous Aerosol Precursors and Particles in an Aircraft Engine

机译:飞机发动机气态前驱体和颗粒的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

Aviation-produced particulate matter has a direct impact on climate, atmospheric composition at flight altitudes, and local air quality in the vicinity of airports. The formation of soot and gaseous aerosol precursors inside the combustor and during gas expansion in turbine stages and nozzles must be addressed before the real impact of aircraft engines with respect to particulate matter emissions can be assessed. To design strategies to reduce particulate matter emissions, the development of a zero-/one-dimensional gas-turbine model is proposed, taking into account combustor and postcombustor flow operating over the landing/takeoff cycles with a detailed kerosene jet-Al kinetics scheme, including a soot-dynamics model. This approach is very efficient computationally and may be clearly satisfying for parametric studies or in a predesign step. First, the model's predictive capacity for capturing the main features of gas-turbine combustion as well as the expansion of combustion products in the turbine and nozzle has appeared acceptable as concentrations of International Civil Aviation Organization standard emissions and sulfur-species conversion agree reasonably well with measurements, whatever the operating conditions. In particular, the results showed that SO_3 and H_2SO_4 concentrations still exhibited variations in the postcombustor zone until exiting the engine nozzle. Using a revised surface-growth mechanism combined with the condensation of six major polycyclic aromatic hydrocarbons has significantly improved predictions of computed particles diameters. Such values now agree very closely with experimental data collected over the landing/takeoff cycle, whereas the concentration of polycyclic aromatic hydrocarbons, as well as ethylene and benzene, were better predicted for the highest power setting (i.e., takeoff and climb configurations).
机译:航空产生的颗粒物直接影响气候,飞行高度的大气成分以及机场附近的当地空气质量。必须先解决燃烧器内部以及涡轮级和喷嘴中气体膨胀期间烟尘和气态气溶胶前体的形成,然后才能评估飞机发动机对颗粒物排放的实际影响。为了设计减少颗粒物排放的策略,提出了一种零维/一维燃气轮机模型,并考虑了着陆/起飞周期内运行的燃烧室和燃烧室后流以及详细的煤油射流-Al动力学方案,包括烟尘动力学模型。这种方法在计算上非常有效,对于参数研究或在预设计步骤中可能显然很令人满意。首先,由于国际民用航空组织标准排放物的浓度和硫物质的转化率与国际民航组织的标准相当吻合,该模型对燃气轮机燃烧的主要特征以及燃气轮机和喷嘴中燃烧产物的膨胀的预测能力已被接受。测量,无论运行条件如何。尤其是,结果表明,SO_3和H_2SO_4的浓度在离开燃烧器喷嘴之前仍在燃烧后区域中显示出变化。使用修正的表面增长机理与六种主要的多环芳烃缩合相结合,可以显着改善对计算出的粒径的预测。现在,这些值与在着陆/起飞周期内收集的实验数据非常吻合,而对于最高功率设置(即起飞和爬升配置),可以更好地预测多环芳烃以及乙烯和苯的浓度。

著录项

  • 来源
    《Journal of propulsion and power》 |2016年第4期|918-928|共11页
  • 作者单位

    Ecole de Technologie Superieure, Montreal, Quebec H3C 1K3, Canada;

    Ecole de Technologie Superieure, Montreal, Quebec H3C 1K3, Canada;

    Ecole de Technologie Superieure, Montreal, Quebec H3C 1K3, Canada;

    Ecole de Technologie Superieure, Montreal, Quebec H3C 1K3, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号