首页> 美国政府科技报告 >Multi-Flexible-Body Analysis for Application to Wind Turbine Control Design. Subcontractor Report from Spetember 10, 1999-October 31, 2003
【24h】

Multi-Flexible-Body Analysis for Application to Wind Turbine Control Design. Subcontractor Report from Spetember 10, 1999-October 31, 2003

机译:多柔性体分析在风力发电机组控制设计中的应用。 1999年9月10日至2003年10月31日的分包商报告

获取原文

摘要

A computational framework for aeroelastic analysis of Horizontal Axis Wind Turbines (HAWT's) is presented. The structural model is separated into multi-rigid-body and flexible-body parts. Equations for the former are derived using Kane's method; and the flexible portions are assumed to be beam-like structures, described using a mixed formulation. The equations of motion are of a relatively low order in terms of geometrically-exact beam finite elements. The flexible and rigid subsystems are coupled with an aerodynamic model to form an aeroelastic analysis. A nonlinear, periodic, steady-state solution and a linearized transient solution about the periodic steady state are obtained. The computational framework for two-bladed, HAWT's is built using time finite elements over a half-period. The linearized ordinary differential equations have periodic coefficients in time, and a Floquet stability analysis for the linearized system is directly undertaken using periodic steady state results. Numerical results are presented for horizontal axis wind turbines including steady-state response and Floquet characteristic exponents and operating mode shapes. Effects on the dynamics of the system for pre-cone, rotor speed, teetering hinge lateral offset, teetering and yawing stiffness and damping, and composite blade properties are investigated. A user's guide for the computer program WTFlex is included in the appendix.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号