首页> 美国政府科技报告 >MRF Applications: Measurement of Process-Dependent Subsurface Damage in Optical Materials Using the MRF Wedge Technique
【24h】

MRF Applications: Measurement of Process-Dependent Subsurface Damage in Optical Materials Using the MRF Wedge Technique

机译:mRF应用:使用mRF楔形技术测量光学材料中与工艺相关的亚表面损伤

获取原文

摘要

Understanding the behavior of fractures and subsurface damage in the processes used during optic fabrication plays a key role in determining the final quality of the optical surface finish. During the early stages of surface preparation, brittle grinding processes induce fractures at or near an optical surface whose range can extend from depths of a few (micro)m to hundreds of (micro) m depending upon the process and tooling being employed. Controlling the occurrence, structure, and propagation of these sites during subsequent grinding and polishing operations is highly desirable if one wishes to obtain high-quality surfaces that are free of such artifacts. Over the past year, our team has made significant strides in developing a diagnostic technique that combines magnetorheological finishing (MRF) and scanning optical microscopy to measure and characterize subsurface damage in optical materials. The technique takes advantage of the unique nature of MRF to polish a prescribed large-area wedge into the optical surface without propagating existing damage or introducing new damage. The polished wedge is then analyzed to quantify subsurface damage as a function of depth from the original surface. Large-area measurement using scanning optical microscopy provides for improved accuracy and reliability over methods such as the COM ball-dimple technique. Examples of the technique's use will be presented that illustrate the behavior of subsurface damage in fused silica that arises during a variety of intermediate optical fabrication process steps.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号