首页> 美国政府科技报告 >Near Infrared, High Energy, Ultrashort Pulse Laser-Light Exposure Genetically Induces p53, a Gene in the DNA Repair and Cell Suicide Pathways in Cultured Human Cells
【24h】

Near Infrared, High Energy, Ultrashort Pulse Laser-Light Exposure Genetically Induces p53, a Gene in the DNA Repair and Cell Suicide Pathways in Cultured Human Cells

机译:近红外,高能量,超短脉冲激光曝光基因诱导p53,DNa修复中的基因和培养的人类细胞中的细胞自杀途径

获取原文

摘要

The use of laser light for targeting devices and weapons has sharply increased the likelihood that aircrew and support personnel will be exposed to laser light during operations. The increased potential for exposure of humans highlights the need for scientifically-based safety standards for laser exposure at the ultrashort pulse lengths. Current safety standards are largely extrapolations of exposure limits at longer pulse lengths using a minimal visible lesion endpoint in the Rhesus monkey retinal model. A non-animal model for assessing laser-light damage to tissue, particularly human, is quite desirous for obvious scientific, political, and fiduciary reasons. We assessed the sublethal insult to human cells using a tissue culture system for specific genes that have been shown to be important in several biological processes that could lead to cancer or cell death. Using the CAT-Tox (L) (Xenometrix, Inc.) assay, it appears that 1064 nm, nanosecond pulses of laser light is sensed and induces several stress response genes, including p53, a gene in the DNA repair and apoptosis (cell suicide) regulatory pathways in a dose dependent fashion. This approach provides insight into a more global methodology for characterizing environmental stressors via genetic profiling.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号