首页> 美国政府科技报告 >RDX in Plant Tissue: Leading to Humification in Surface Soils.
【24h】

RDX in Plant Tissue: Leading to Humification in Surface Soils.

机译:植物组织中的RDX:导致表面土壤腐殖化。

获取原文

摘要

The overall objective was to improve the understanding of RDX transformation in plant tissues and the subsequent cycling of tissue-associated RDX and RDX daughter products among soil mineral and humic fractions following plant senescence. The hypothesis was that environmental risks from RDX at military training ranges can be reduced, and possibly eliminated, through a series of coupled processes involving plant uptake, plant enzyme mediated transformation, photodegradation in the plant, and finally humification of plant-tissue-associated RDX conjugates into soil organic matter after plant senescence and leaf drop. Although the effect of each individual process may be small, the combined effects of the processes taken as a system for sustainability may have a significant impact on RDX residues on surface soils. If so, they may lead to feasible range sustainability management practices. RDX is found in the soils and groundwater of bombing ranges and manufacturing sites. Plants of the family Lamiaceae were used to determine if either their enzymatic activities could accelerate the degradation of RDX once taken up from an aqueous solution. Plant tissue with higher chlorophyll content was found to contain higher concentrations of RDX, while the presence of anthocyanin appeared to have no impact. Of the four varieties of mint tested, chocolate mint, a variety of spearmint Mentha spicata, had significantly lower RDX concentrations in its leaf tissues. Further research is needed to determine what processes are responsible for the reduced RDX content. Ascorbate, pH, and glutathione (GSH) were found to be statistically significant factors in the photodegradation of 2,4,6-trinitrotoluene (TNT), a process applicable to RDX. Ascorbate and pH increased the rate of TNT degradation, whereas GSH inhibited it. Photo-induced degradation of TNT occurs at approximately the same rate in extract-based solution.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号