首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >Optimization of light harvesting and photoprotection: Molecular mechanisms and physiological consequences (Review)
【24h】

Optimization of light harvesting and photoprotection: Molecular mechanisms and physiological consequences (Review)

机译:光收集和光保护的优化:分子机制和生理后果(综述)

获取原文
获取原文并翻译 | 示例
           

摘要

The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces.Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging radiation in saturating light. The light-harvesting complexes (LHCII) are central to this regulation, which is achieved by phosphorylation of stromal residues, protonation on the lumen surface and de-epoxidation of bound violaxanthin. The functional flexibility of LHCII derives from a remarkable pigment composition and configuration that not only allow efficient absorption of light and efficient energy transfer either to photosystem II or photosystem I core complexes, but through subtle configurational changes can also exhibit highly efficient dissipative reactions involving chlorophyll-xanthophyll and/or chlorophyll- chlorophyll interactions. These changes in function are determined at a macroscopic level by alterations in protein-protein interactions in the thylakoid membrane. The capacity and dynamics of this regulation are tuned to different physiological scenarios by the exact protein and pigment content of the light-harvesting system. Here, the molecular mechanisms involved will be reviewed, and the optimization of the light-harvesting system in different environmental conditions described.
机译:Jan Anderson及其同事研究了类囊体膜中蛋白质复合物独特的侧向组织结构,其依赖于各种吸引力和排斥力的平衡。这些力的调节可实现光合作用的关键生理调节,从而有效地限制了光合光线,但会消耗饱和光中过多的潜在有害辐射。集光复合物(LHCII)是该调节的核心,它是通过基质残基的磷酸化,管腔表面的质子化和结合的紫黄质的脱环氧化来实现的。 LHCII的功能灵活性源于出色的颜料成分和构型,不仅可以有效吸收光,而且可以将能量有效转移到光系统II或光系统I核心配合物中,而且通过细微的结构变化,还可以表现出涉及叶绿素-的高效耗散反应。叶黄素和/或叶绿素-叶绿素相互作用。这些功能的变化是通过类囊体膜中蛋白质-蛋白质相互作用的改变在宏观水平上确定的。通过光收集系统中确切的蛋白质和色素含量,可以将该调节的能力和动态调整到不同的生理情况。在这里,将审查涉及的分子机制,并描述在不同环境条件下光收集系统的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号