首页> 外文期刊>Sedimentology: Journal of the International Association of Sedimentologists >Climbing-ripple successions in turbidite systems: depositional environments, sedimentation rates and accumulation times
【24h】

Climbing-ripple successions in turbidite systems: depositional environments, sedimentation rates and accumulation times

机译:浊积岩系统中的爬升-脉动演替:沉积环境,沉积速率和累积时间

获取原文
获取原文并翻译 | 示例
           

摘要

Climbing-ripple cross-lamination is most commonly deposited by turbidity currents when suspended load fallout and bedload transport occur contemporaneously. The angle of ripple climb reflects the ratio of suspended load fallout and bedload sedimentation rates, allowing for the calculation of the flow properties and durations of turbidity currents. Three areas exhibiting thick (>50m) sections of deep-water climbing-ripple cross-lamination deposits are the focus of this study: (i) the Miocene upper Mount Messenger Formation in the Taranaki Basin, New Zealand; (ii) the Permian Skoorsteenberg Formation in the Tanqua depocentre of the Karoo Basin, South Africa; and (iii) the lower Pleistocene Magnolia Field in the Titan Basin, Gulf of Mexico. Facies distributions and local contextual information indicate that climbing-ripple cross-lamination in each area was deposited in an 'off-axis' setting where flows were expanding due to loss of confinement or a decrease in slope gradient. The resultant reduction in flow thickness, Reynolds number, shear stress and capacity promoted suspension fallout and thus climbing-ripple crosslamination formation. Climbing-ripple cross-lamination in the New Zealand study area was deposited both outside of and within channels at an inferred break in slope, where flows were decelerating and expanding. In the South Africa study area, climbing-ripple cross-lamination was deposited due to a loss of flow confinement. In the Magnolia study area, an abrupt decrease in gradient near a basin sill caused flow deceleration and climbing-ripple cross-lamination deposition in off-axis settings. Sedimentation rate and accumulation time were calculated for 44 climbing-ripple cross-lamination sedimentation units from the three areas using TDURE, a mathematical model developed by Baas et al. (2000). For T_c divisions and T_(bc) beds averaging 26 cm and 37 cm thick, respectively, average climbing-ripple cross-lamination and whole bed sedimentation rates were 0·15 mm sec~(-1) and 0·26 mm sec~(-1) and average accumulation times were 27 min and 35 min, respectively. In some instances, distinct stratigraphic trends of sedimentation rate give insight into the evolution of the depositional environment. Climbing-ripple cross-lamination in the three study areas is developed in very fine-grained to fine-grained sand, suggesting a grain size dependence on turbidite climbing-ripple cross-lamination formation. Indeed, the calculated sedimentation rates correlate well with the rate of sedimentation due to hindered settling of very fine-grained and fine-grained sand–water suspensions at concentrations of up to 20% and 2?5%, respectively. For coarser grains, hindered settling rates at all concentrations are much too high to form climbing-ripple cross-lamination, resulting in the formation of massive/structureless S_3 or T_a divisions.
机译:当悬吊的负载沉降物和床荷运输同时发生时,浑浊的电流最容易导致爬升波纹状的交叉层积。波纹爬升的角度反映了悬浮物沉降与床层沉降速率的比值,从而可以计算出流量特性和浊流持续时间。这项研究的重点是三个区域,这些区域表现出深水爬升-波纹状交叉层状沉积的厚段(> 50m):(i)新西兰塔拉纳基盆地中新世上山Messenger Messenger组; (ii)南非Karoo盆地Tanqua沉积中心的二叠纪Skoorsteenberg组; (iii)墨西哥湾泰坦盆地的下更新世木兰田。相分布和局部上下文信息表明,每个区域中的爬升波纹状横向叠层均沉积在“离轴”设置中,由于限制的丧失或坡度梯度的减小,流量正在扩大。由此导致的流动厚度,雷诺数,剪切应力和承载力的减小促进了悬浮物的沉降,并因此形成了波纹状的交叉层压。新西兰研究区的爬升-波纹交叉叠层沉积在河道的外部和内部,是在坡度推断为断口处,那里的流量正在减速和扩大。在南非研究区,由于失去流动限制,沉积了波纹波纹交叉层压。在木兰研究区,盆底槛附近的坡度突然减小,导致离轴设置中的水流减速和爬升波纹状横向分层沉积。利用Baas等人开发的数学模型TDURE,计算了三个地区的44个波纹波纹交叉分层沉积单元的沉积速率和累积时间。 (2000)。对于平均厚度分别为26 cm和37 cm的T_c分区和T_(bc)床,平均爬升波纹交叠和全床沉降速率分别为0·15 mm sec〜(-1)和0·26 mm sec〜( -1)和平均累积时间分别为27分钟和35分钟。在某些情况下,沉积速率的明显地层趋势可以洞悉沉积环境的演变。在三个研究区域中,爬升-波纹交叉层压是在非常细颗粒至细颗粒的砂土中发育的,这表明晶粒尺寸取决于浊度岩的爬升-波纹交叉层压形成。的确,由于分别造成浓度分别高达20%和2%5%的非常细颗粒和细颗粒的沙水悬浮液的沉降受阻,所计算出的沉降速率与沉降速率具有很好的相关性。对于较粗的晶粒,所有浓度下的阻碍沉降速度都太高而无法形成爬升波纹状的交叉层压,从而导致形成大块/无结构的S_3或T_a分裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号