首页> 外文期刊>Soil Biology & Biochemistry >Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature
【24h】

Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature

机译:文献综述中的土壤有机碳特征和矿物相互作用的一些概念

获取原文
获取原文并翻译 | 示例
           

摘要

In the past decades, the molecular structure of soil organic carbon (SOC) has been regarded as a pivotal criterion for predicting organic carbon (OC) turnover in soils. However, newly emerging evidence indicates that molecular structure does not necessarily predetermine the persistence of OC in soils and that environmental factors (e.g., soil structure, availability of resources and diversity of microorganisms) exert an additional influence upon SOC turnover. Among these potential factors, adsorption to soil minerals and occlusion within soil aggregates have been universally demonstrated to shield SOC from decomposition. In this review, we identified the uncertainties involved in examining the turnover of specific SOC fractions (lignin, humic substances (HS), coal and black carbon (BC)) in soils. Moreover, we concluded that the role of minerals in SOC adsorption and stability depends on the mineralogy, chemical properties of SOC and soil conditions. Characterization of SOC chemical composition in different soil size fractions (e.g., sand, silt and clay) shows that different-sized minerals potentially protect different types of SOC. Aromatic C may be adsorbed to minerals in the coarse silt/sand fractions and preserved there, while fine-sized (fine silt and clay) minerals generally associate with microbial-derived SOC. Finally, by tabulating the data from the C-13 turnover time and C-14 ages of bulk SOC and specific SOC fractions (carbohydrate, lignin, aliphatic C, HS, and BC), we obtained further validation that molecular structure does not exclusively determine the turnover rate of OC in soils. Furthermore, the C-13 turnover time and C-14 age of SOC consistently increased with increasing soil depth, which may be partially attributed to the larger protective potential of SOC by minerals and the unfavorable conditions for biodegradation in the subsoils. Because the limitations of C-13 and C-14-dating techniques have largely been neglected, they are emphatically discussed in this review. It is suggested that more geomorphic and spectroscopic evidence is paramount to further explore the mechanisms underlying the persistence of OC in soils. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在过去的几十年中,土壤有机碳(SOC)的分子结构被视为预测土壤中有机碳(OC)转换的关键标准。但是,新出现的证据表明,分子结构并不一定预定土壤中OC的持久性,而环境因素(例如,土壤结构,资源的可利用性和微生物的多样性)对SOC的转化产生了额外的影响。在这些潜在因素中,已普遍证明对土壤矿物质的吸附和土壤团聚体的吸留可​​防止SOC分解。在这篇综述中,我们确定了检查土壤中特定SOC组分(木质素,腐殖质(HS),煤和黑碳(BC))的周转率所涉及的不确定性。此外,我们得出的结论是,矿物在SOC吸附和稳定性中的作用取决于矿物学,SOC的化学性质和土壤条件。在不同土壤尺寸分数(例如沙子,粉砂和粘土)中SOC化学成分的表征表明,不同尺寸的矿物可能会保护不同类型的SOC。芳烃C可能会吸附到粗粉砂/砂质级分中的矿物上并保存在那里,而细粒(细粉砂和粘土)矿物通常与微生物来源的SOC相关。最后,通过将大块SOC和特定SOC馏分(碳水化合物,木质素,脂肪族C,HS和BC)的C-13周转时间和C-14年龄的数据制成表格,我们获得了进一步的验证,即分子结构并不能完全确定土壤中OC的转化率。此外,SOC的C-13周转时间和C-14年龄随着土壤深度的增加而持续增加,这可能部分归因于矿物质对SOC的更大保护潜力以及土壤中生物降解的不利条件。由于在很大程度上忽略了C-13和C-14约会技术的局限性,因此在本综述中着重讨论了它们。建议更多的地貌学和光谱学证据对于进一步探索土壤中OC持续存在的机理至关重要。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号