...
首页> 外文期刊>Smart Materials & Structures >Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator
【24h】

Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator

机译:使用非并置加速度传感器和压电致动器的加劲板复合多模式振动控制

获取原文
获取原文并翻译 | 示例
           

摘要

A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations.
机译:提出了一种基于非并置加速度传感器和压电致动器的扩展状态观测器(ESO)方法,对全夹紧加劲板(ACSP)进行多模式振动控制的主动方法。考虑到ESO对系统状态变量,其他模式的输出叠加和控制耦合,外部激励以及模型不确定性的估计能力,同时采用一种复合控制方法,即基于ESO的振动控制方案,以确保集总扰动和闭环系统的不确定性排除。由未并置的传感器/执行器对引起的相位滞后和时间延迟现象会降低控制系统的性能,甚至引起不稳定性。为了解决这个问题,简单的比例微分(PD)控制器和带有输出预测器设计的加速度前馈产生了每种振动模式的控制律。通过实验获得模态频率,相位磁滞回线和由于加速度传感器和压电膜片致动器的未并置放置而引起的相位滞后值,并且使用Smith Smith预测器技术补偿了相位滞后。为了提高振动控制性能,采用基于逻辑映射的混沌优化方法对反馈通道的参数进行自动调整。使用dSPACE实时仿真平台测试了ACSP的实验控制系统。实验结果表明,所提出的复合主动控制算法是抑制多模态振动的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号