首页> 外文期刊>SAE International Journal of Engines >Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach
【24h】

Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach

机译:基于瞬态热力学分析方法的涡轮增压汽油机排气歧管设计

获取原文
获取原文并翻译 | 示例
           

摘要

The present paper describes a CAE analysis approach to evaluate the design of exhaust manifold of a turbo charged gasoline engine. It allows design engineers to identify structural weakness at the early stage or to find the root cause of exhaust manifold failures. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the exhaust manifold assembly during thermal shock cycles, which include rated speed full load, rated speed motored and idle speed conditions. A transient heat transfer simulation is performed to provide thermal boundary conditions for the nonlinear stress/strain analysis. The finite element model includes a part of cylinder head, exhaust manifold, gaskets, turbo charger housing, catalytic converter, brackets, bolts and nuts. The results show that plastic deformation is the main cause of manifold cracking and the manifold flange distortion causes the exhaust leakage. The simulation results indicate that predicted crack locations and leak area are in agreement with that from the engine durability test. Based on the baseline calculation results, local geometric modifications are made, which include changed shape of the inlet flange, changed location of anchor bolt hole and removing the internal baffle. For the modified design of the exhaust manifold, the cumulated equivalent plastic strain and the gasket sealing pressure at the end of third cycle meet the guideline limits. The modified exhaust manifold successfully passed all tests. Finally, general design recommendations of exhaust manifold are summarized in the paper.
机译:本文介绍了一种CAE分析方法,以评估涡轮增压汽油发动机的排气歧管设计。它使设计工程师可以在早期发现结构缺陷或找到排气歧管故障的根本原因。使用瞬态非线性有限元方法来计算排气歧管组件在热冲击循环中的塑性变形和热机械行为,其中包括额定速度全负载,额定电动机速度和怠速条件。进行瞬态传热模拟,为非线性应力/应变分析提供热边界条件。有限元模型包括汽缸盖,排气歧管,垫圈,涡轮增压器壳体,催化转化器,支架,螺栓和螺母的一部分。结果表明,塑性变形是歧管破裂的主要原因,歧管法兰变形导致排气泄漏。仿真结果表明,预测的裂纹位置和泄漏面积与发动机耐久性试验的结果一致。根据基线计算结果,进行了局部几何修改,包括更改进口法兰的形状,更改地脚螺栓孔的位置以及移除内部挡板。对于排气歧管的改进设计,在第三次循环结束时,累积的等效塑性应变和垫片密封压力均达到准则极限。改装后的排气歧管成功通过了所有测试。最后,总结了排气歧管的一般设计建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号