首页> 外文期刊>Organic process research & development >In-Process Monitoring and Control of Supersaturation in Seeded Batch Cooling Crystallisation of L-Glutamic Acid: From Laboratory to Industrial Pilot Plant
【24h】

In-Process Monitoring and Control of Supersaturation in Seeded Batch Cooling Crystallisation of L-Glutamic Acid: From Laboratory to Industrial Pilot Plant

机译:L-谷氨酸种子分批冷却结晶过程中过饱和度的在线监测和控制:从实验室到工业试验工厂

获取原文
获取原文并翻译 | 示例
           

摘要

A measurement-based closed-loop control system using in-process ATR-FTIR spectroscopy coupled with a multivariate chemdmetric PLS calibration model is developed, validated, and applied to the monitoring and control of supersaturation in a 250- L industrial pilot-plant crystalliser. Supersaturation control experiments are carried out on seeded batch cooling crystallisation of β-L-glutarmic acid from aqueous solutions using two methods of seeding involving addition of seeds to the solution and generation of seeds within the solution. The generic applicability of the approach is demonstrated through this challenging system reflecting this molecule's weak chromophore for infrared and relatively low solubility compared with previous solute-solvent systems. Based on the laboratory experiments, the system was fully tested and optimised prior to a series of trials carried out in an industrial pilot plant at Syngenta, Munchwillen, Switzerland. Good control of the supersaturation is achieved at three levels, 1.1, 1.2, and 1.3, within a prescribed range of ±0.025. The average product crystal size is found to decrease with increasing supersaturation. Comparison between product crystals produced at the 20- and 250-L scales indicates that secondary nucleation is more prevalent at the smaller-scale size. For the same level of supersaturation, the rate of depletion of solute is faster at the 20-L scale size than at 250-L scale, and hence a higher cooling rate is required to maintain the desired supersaturation. However, for a given crystalliser scale size, as expected, the mean cooling rate required to maintain a constant supersaturation is found to increase with increasing super-saturation level.
机译:基于过程的ATR-FTIR光谱技术结合多元化学PLS校准模型的基于测量的闭环控制系统已开发,验证并应用于250 L工业中试装置结晶器中过饱和的监测和控制。使用两种接种方法(包括向溶液中添加种子和在溶液中生成种子)对种子从水溶液中分批冷却β-L-谷氨酸进行过饱和控制实验。通过具有挑战性的系统证明了该方法的一般适用性,该系统反映了该分子对红外的弱发色团和与以前的溶质-溶剂系统相比相对较低的溶解度。根据实验室实验,对该系统进行了全面的测试和优化,然后在瑞士蒙克维林先正达的工业试验工厂进行了一系列试验。在规定的±0.025范围内的三个级别(1.1、1.2和1.3)可以很好地控制过饱和。发现平均产物晶体尺寸随着过饱和度的增加而减小。在20 L和250 L规模生产的产品晶体之间的比较表明,在较小规模的规模上,二次成核更为普遍。对于相同水平的过饱和,溶质的消耗速率在20-L标度下比在250-L标度下更快,因此,需要更高的冷却速率来保持所需的过饱和。然而,对于给定的结晶器鳞片尺寸,如预期的那样,发现保持恒定的过饱和度所需的平均冷却速率随过饱和度水平的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号