...
首页> 外文期刊>Cell transplantation >Permissive Schwann Cell Graft/Spinal Cord Interfaces for Axon Regeneration
【24h】

Permissive Schwann Cell Graft/Spinal Cord Interfaces for Axon Regeneration

机译:许用许旺细胞移植/脊髓接口的轴突再生。

获取原文
获取原文并翻译 | 示例
           

摘要

The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindfimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants.
机译:目前正在一项临床试验中评估自体雪旺细胞(SCs)修复受损脊髓的移植。作为支持,这项研究确定了脊髓/ SC桥界面的特性,这些特性使再生的脑干轴突能够穿过它们,可能导致大鼠后肢运动的改善。将SC和Matrigel的流体桥置于完整的脊髓横断中。与SC和Matrigel的预凝胶桥相比,它们改善了跨延髓界面的脑干轴突的再生。再生的脑干轴突形成突触素(+)钮扣状终端,并在尾部界面接触MAP2A(+)树突。脑干轴突再生直接与胶质纤维酸性蛋白(GFAP(+))星形胶质细胞过程延长到SC桥。电镜显示轴突,SC和星形胶质细胞被封闭在一起,并被连续的基底层所包围。神经聚糖(NG2)的表达与这些通道有关。受伤后一周,GFAP(+)过程共表达巢蛋白和脑脂质结合蛋白,GFAP(+)/ NG2(+)过程的尖端与再生的脑干轴突一起延伸到桥中。大脑干轴突再生和桥梁中GFAP(+)进程的数量都与后肢运动的改善相关。脊髓损伤后,星形胶质细胞可能进入阻止轴突再生的反应状态。星形胶质细胞过程延长成SC桥,但是,NG2(+)隧道的形成使脑干轴突再生和功能的改善。对于脊髓修复而言,确定有利于星形胶质细胞向病变/移植物中伸长的条件非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号