...
首页> 外文期刊>Cell >Ribosome Rescue, Nearing the End
【24h】

Ribosome Rescue, Nearing the End

机译:核糖体挽救,快要结束了

获取原文
获取原文并翻译 | 示例
           

摘要

During canonical translation, ribosomes terminate when they encounter a stop codon in the mRNA (Figure 1A). In eukaryotes, the stop codon is recognized by the eukaryotic release factor eRF1, which is delivered in complex with eRF3 (Dever and Green, 2012). Hydrolysis of GTP to GDP by eRF3 leads to dissociation of eRF3 from the ribosome, allowing binding of the ATP-binding cassette protein ABCE1. ABCE1 works in concert with eRF1 to catalyze release of the completed polypeptide chain and to dissociate and recycle the posttermination complex components for the next round of translation (Dever and Green, 2012). However, ribosomes that translate damaged or truncated mRNAs that lack a stop codon cannot enter into the canonical translation termination pathway and therefore become stalled at the 30 end of the mRNA (Franckenberg et al., 2012). Studies using synthetic reporters have demonstrated that Dom34 rescues ribosomes stalled on these damaged mRNAs (Shao et al., 2013; Tsuboi et al., 2012); however, bone fide Dom34 mRNA substrates in vivo have not yet been identified. In a new study in this issue of Cell, Guydosh and Green (2014) employ ribosome profiling (Ingolia et al., 2009) to globally monitor the position, occupancy, and distribution of ribosomes on mRNAs in wild-type yeast (S. cerevisiae) as well as a yeast strain lacking Dom34 (dom34D). As expected, Dom34 is indeed observed to recycle ribosomes stalled at the 30 end of truncated mRNAs, such as the HAC1 mRNA. Unexpectedly, Dom34 also recycles ribosomes from the noncoding region of many cellular mRNAs.
机译:在规范翻译过程中,核糖体在mRNA中遇到终止密码子时会终止(图1A)。在真核生物中,终止密码子被真核释放因子eRF1识别,该因子与eRF3结合提供(Dever和Green,2012)。 eRF3将GTP水解为GDP导致eRF3与核糖体解离,从而允许ATP结合盒蛋白ABCE1结合。 ABCE1与eRF1协同工作,以催化完整多肽链的释放,并解离和回收后终止复合物成分,以进行下一轮翻译(Dever和Green,2012年)。但是,翻译缺少终止密码子的受损或截断的mRNA的核糖体无法进入规范的翻译终止途径,因此停滞在mRNA的30末端(Franckenberg等,2012)。使用合成报道基因的研究表明,Dom34可以挽救停滞在这些受损mRNA上的核糖体(Shao等人,2013; Tsuboi等人,2012);但是,尚未确定体内真正的Dom34 mRNA底物。在本期《细胞》杂志的一项新研究中,Guydosh和Green(2014)使用核糖体谱分析(Ingolia等,2009)来全面监测野生型酵母(酿酒酵母)中核糖体在mRNA上的位置,占有率和分布。 )以及缺少Dom34的酵母菌株(dom34D)。如预期的那样,确实观察到Dom34回收停滞在截短的mRNA 30末端的核糖体,例如HAC1 mRNA。出乎意料的是,Dom34还从许多细胞mRNA的非编码区回收核糖体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号