...
首页> 外文期刊>Rock Mechanics and Rock Engineering >Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology
【24h】

Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

机译:利用CT扫描技术研究气页岩水力压裂网络的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Multistage fracturing of the horizontal well is recognized as the main stimulation technology for shale gas development. The hydraulic fracture geometry and stimulated reservoir volume (SRV) is interpreted by using the microseismic mapping technology. In this paper, we used a computerized tomography (CT) scanning technique to reveal the fracture geometry created in natural bedding-developed shale (cubic block of 30 cm x 30 cm x 30 cm) by laboratory fracturing. Experimental results show that partially opened bedding planes are helpful in increasing fracture complexity in shale. However, they tend to dominate fracture patterns for vertical stress difference Delta sigma (v) a parts per thousand currency sign 6 MPa, which decreases the vertical fracture number, resulting in the minimum SRV. A uniformly distributed complex fracture network requires the induced hydraulic fractures that can connect the pre-existing fractures as well as pulverize the continuum rock mass. In typical shale with a narrow (< 0.05 mm) and closed natural fracture system, it is likely to create complex fracture for horizontal stress difference Delta sigma (h) a parts per thousand currency sign 6 MPa and simple transverse fracture for Delta sigma (h) a parts per thousand yen 9 MPa. However, high naturally fractured shale with a wide open natural fracture system (> 0.1 mm) does not agree with the rule that low Delta sigma (h) is favorable for uniformly creating a complex fracture network in zone. In such case, a moderate Delta sigma (h) from 3 to 6 MPa is favorable for both the growth of new hydraulic fractures and the activation of a natural fracture system. Shale bedding, natural fracture, and geostress are objective formation conditions that we cannot change; we can only maximize the fracture complexity by controlling the engineering design for fluid viscosity, flow rate, and well completion type. Variable flow rate fracturing with low-viscosity slickwater fluid of 2.5 mPa s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with pre-existing fractures. Moreover, the simultaneous fracturing can effectively reduce the stress difference and increase the fracture number, making it possible to generate a large-scale complex fracture network, even for high Delta sigma (h) from 6 MPa to 12 MPa.
机译:水平井的多级压裂被认为是页岩气开发的主要增产技术。通过使用微地震测绘技术可以解释水力压裂的几何形状和受激储层体积(SRV)。在本文中,我们使用了计算机断层扫描(CT)扫描技术,通过实验室压裂揭示了天然层理开发的页岩(30 cm x 30 cm x 30 cm的立方块)中产生的裂缝几何形状。实验结果表明,部分打开的层理面有助于增加页岩的裂缝复杂性。但是,对于垂直应力差Δsigma(v)千分之6兆帕的垂直应力差Δσ(v),它们往往会占主导地位,这会减小垂直裂缝数,从而使SRV最小。均匀分布的复杂裂隙网络需要诱发的水力压裂,这些压裂可以连接先前存在的裂隙并粉碎连续岩体。在具有狭窄(<0.05 mm)且闭合的自然裂缝系统的典型页岩中,水平应力差Δsigma(h)千分率6 MPa时可能会产生复杂的裂缝,而Δsigma(h )千分之一9 MPa。但是,高天然裂缝性页岩具有宽开放的天然裂缝系统(> 0.1 mm)与低Delta sigma(h)有利于均匀地在区域中创建复杂裂缝网络的规则不符。在这种情况下,从3到6 MPa的适度Delta sigma(h)既有利于新的水力压裂裂缝的发展,又有利于天然裂缝系统的活化。页岩层理,自然裂缝和地应力是我们不能改变的客观地层条件。我们只能通过控制流体粘度,流速和完井类型的工程设计来最大化裂缝的复杂性。 2.5 mPa s的低粘度滑水可变流量压裂被证明是一种有效的方法,可以改善水力压裂裂缝与已有裂缝之间的连通性。此外,即使在从6 MPa到12 MPa的高Deltaσ(h)时,同时压裂也可以有效地减小应力差并增加裂缝数,从而有可能生成大规模的复杂裂缝网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号