首页> 外文期刊>Reviews in Fish Biology and Fisheries >The European eel (Anguilla anguilla, Linnaeus), its Lifecycle,Evolution and Reproduction: A Literature Review
【24h】

The European eel (Anguilla anguilla, Linnaeus), its Lifecycle,Evolution and Reproduction: A Literature Review

机译:欧洲鳗(Anguilla anguilla,Linnaeus),其生命周期,进化和繁殖:文献综述

获取原文
获取原文并翻译 | 示例
           

摘要

The European eel (Anguilla anguilla Linnaeus 1758) is a species typical for waters of Western Europe. Thanks to early expeditions on the Atlantic Ocean by the Danish biologist Johannes Schmidt who found small (<10mm) leptocephali larvae in the Sargasso Sea about 100 years ago, we have now a strong indication where the spawning site for this species is located. The American eel (Anguilla rostrata, LeSueur) also spawns in the Sargasso Sea. The spawning time and location of both species have been supported and refined in recent analyses of the available historical data. Subsequent ichthyoplankton surveys conducted by McCleave (USA) and Tesch (Germany) in the 1980s indicated an increase in the number of leptocephali <10 mm , confirming and refining the Sargasso Sea theory of Johannes Schmidt. Distinctions between the European and American eel are based on morphological characteristics (number of vertebrae) as well as molecular markers (allozymes, mitochondrial DNA and anonymous genomic-DNA. Although recognised as two distinct species, it remains unclear which mechanisms play a role in species separation during larval drift, and what orientation mechanism eels use during migration in the open sea. The current status of knowledge on these issues will be presented. The hypothesis that all European eel migrate to the Sargasso Sea for reproduction and comprise a single randomly mating population, the so called panmixia theory, was until recently broadly accepted. However, based on field observations, morphological parameters and molecular studies there are some indications that Schmidt's claim of complete homogeneity of the European eel population and a unique spawning location may be an overstatement. Recent molecular work on European eel indicated a genetic mosaic consisting of several isolated groups, leading to a rejection of the panmixia theory. Nevertheless, the latest extensive genetic survey indicated that the geographical component of genetic structure lacked temporal stability, emphasising the need for temporal replication in the study of highly vagile marine species. Induced spawning of hormone treated eels in the aquarium was collective and simultaneous. In this work for the first time group spawning behaviour has ever been observed and recorded in eels. Studies in swim-tunnels indicate that eels can swim four to six times more efficiently than non-anguilliform fish such as trout. After a laboratory swim trial of eels over 5,500 km, the body composition did not change and fat, protein and carbohydrate were used in the same proportion. This study demonstrated for the first time that European eel are physiologically able of reaching the Sargasso Sea without feeding. Based on catches of newly hatched larvae, temperature preference tests and telemetry tracking of mature hormone treated animals, it can be hypothesised that spawning in the Sargasso Sea is collective and simultaneous, while presumably taking place in the upper 200 m of the ocean. Successful satellite tracking of longfin female eels in New Zealand has been performed to monitor migration pathways. Implementation of this new technology is possible in this species because it is three times larger than the European eel. In the future, miniaturisation of tagging technology may allow European eels to be tracked in time by satellite. The most interesting potential contribution of telemetry tracking of silver eels is additional knowledge about migration routes, rates, and depths. In combination with catches of larvae in the Sargasso Sea, it may elucidate the precise spawning locations of different eel species or groups. Only then, we will be able to define sustainable management issues by integrating this novel knowledge into spawners escapement and juvenile fishing quota.
机译:欧洲鳗鱼(Anguilla anguilla Linnaeus 1758)是西欧水域的典型物种。多亏丹麦生物学家约翰尼斯·施密特(Johannes Schmidt)在大西洋上进行的早期探险,他在大约100年前的Sargasso海中发现了小(<10毫米)细头幼虫,我们现在有力地表明了该物种的产卵地。美洲鳗(Anguilla rostrata,LeSueur)也产于Sargasso海。最近对现有历史数据的分析都支持和完善了这两个物种的产卵时间和产卵位置。随后由麦克莱夫(美国)和Tesch(德国)在1980年代进行的鱼鳞浮游动物调查表明,小于10 mm的小脑畸形的数量有所增加,证实并完善了约翰内斯·施密特(Johannes Schmidt)的Sargasso Sea理论。欧美鳗鱼的区别是基于形态特征(椎骨数量)和分子标记(碱性酶,线粒体DNA和匿名基因组DNA),尽管被认为是两个不同的物种,但尚不清楚哪种机制在物种中起作用幼体漂移过程中的分离,以及鳗鱼在公海中迁移时使用的定向机制,将介绍有关这些问题的当前知识状态的假设,即所有欧洲鳗鱼都迁移到Sargasso海进行繁殖并包括一个随机交配的种群直到现在,所谓的全混虫理论一直被广泛接受,但是,根据现场观察,形态学参数和分子研究,有迹象表明,施密特声称欧洲鳗鱼种群完全同质,并且产卵地点独特可能是一种夸大说法。最近关于欧洲鳗鱼的分子研究表明,由f几个孤立的群体,导致对泛滥症理论的拒绝。尽管如此,最新的广泛遗传调查表明,遗传结构的地理组成部分缺乏时间稳定性,从而强调了在高度易变的海洋物种研究中需要时间复制的问题。激素处理过的鳗鱼在水族箱中的产生是集体的和同时的。在这项工作中,第一次观察到产卵行为并记录在鳗鱼中。游泳隧道中的研究表明,鳗鱼的游泳效率比鳟鱼等非无角形鱼类高四到六倍。在超过5500公里的鳗鱼实验室游泳试验后,人体成分没有变化,脂肪,蛋白质和碳水化合物的使用比例相同。这项研究首次证明了欧洲鳗鱼在生理上能够无需进食而到达藻类海。基于新孵化的幼虫的捕获,温度偏好测试以及对成熟的激素处理过的动物的遥测跟踪,可以假设,在Sargasso海中产卵是集体的和同时的,而产卵发生在大洋的200 m以内。已经成功地对新西兰的长鳍female鳗进行了卫星跟踪,以监测迁移途径。该物种有可能实施这种新技术,因为它比欧洲鳗鱼大三倍。将来,标签技术的小型化可能会允许卫星及时跟踪欧洲鳗鱼。银鳗遥测跟踪最有趣的潜在贡献是有关迁移路线,速率和深度的更多知识。结合在Sargasso海中捕获的幼虫,它可以阐明不同鳗鱼种类或种群的精确产卵位置。只有到那时,我们才能通过将这种新颖的知识整合到产卵者擒纵系统和少年捕鱼配额中来定义可持续管理问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号