首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms
【24h】

Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms

机译:使用星载激光雷达波形在热带稀树草原生态系统中建模冠层高度

获取原文
获取原文并翻译 | 示例
           

摘要

Although savanna ecosystems cover about 20% of the terrestrial land surface and can have productivity equal to some closed forests, their role in the global carbon cycle is poorly understood. As a result, these ecosystems are globallymore important than generally appreciated in the earth observation andmodeling communities. Remote sensing has been proposed as an efficient tool in assessing the physical structure of an ecosystemwhich in turn is closely related to its ecological functionality such as carbon storage. Studies using Light Detection and Ranging (lidar) have demonstrated the technology's ability to measure canopy height and the strong relationship between canopy height and structural attributes such as aboveground biomass, but most of this work has focused on closed canopy forests. This study explored the applicability of spaceborne lidar to estimate canopy height as a pre-requisite for aboveground biomass and carbon storage assessment in savannas. The research used a case study of the Oak Savannas of Santa Clara in California, USA. Discrete return airborne lidar datawas used to extract height metrics in plots coincident with waveform data from the Ice Cloud and land Elevation Satellite (ICESat)'s Geoscience Laser Altimeter System (GLAS). Detailed analysis of GLAS waveforms was followed by nonparametric regression modeling to estimate maximum canopy height and 80th and 90th percentile vegetation heights. Existing methods were adapted with the inclusion of NDVI (as a canopy cover proxy) and interaction terms to increase utility in savanna ecosystems. Our main findings were that merely adopting the methods derived for forests would not produce adequate results. Maximum canopy height was estimated with better accuracy compared to percentile height metrics. The inclusion of NDVI and interaction terms improved maximum canopy height modeling much more than it did for the 80th and 90th percentile height modeling. Taller stands on flat terrain had the best resultswhile shorter stands on steep terrain had the worst. Ourwork has demonstrated the capability ofwaveformlidar to assess vegetation structural attributes in savannas. The challenge in canopy height modeling using this technique in such ecosystems not only is limited to terrain slope but also includes the interacting influence of lowcanopy cover and short height. As such,we need special models for savanna areas in an effort to do global assessments of terrestrial vegetation structure using lidar. For future studieswe recommend a closer look at the non-significant influence of canopy cover on the percentile canopy height models especially its implication on the subsequent biomass modeling.
机译:尽管稀树草原生态系统覆盖了大约20%的陆地表面,其生产力可以与某些封闭的森林相提并论,但是人们对稀树草原在全球碳循环中的作用知之甚少。结果,这些生态系统在全球范围内比在地球观测和建模社区中普遍认识到的更为重要。已经提出了遥感作为评估生态系统物理结构的有效工具,而该生态系统又与其生态功能(例如碳储存)密切相关。使用光检测和测距(激光雷达)的研究表明,该技术具有测量冠层高度的能力以及冠层高度与诸如地下生物量之类的结构属性之间的紧密关系,但是大部分工作集中在封闭的冠层森林上。这项研究探索了星载激光雷达估计冠层高度的适用性,该高度是评估稀树草原地上生物量和碳储量的先决条件。该研究以美国加利福尼亚圣塔克拉拉的橡树大草原为例。离散返回机载激光雷达数据被用于提取与冰云和陆地高程卫星(ICESat)的地球科学激光测高仪系统(GLAS)的波形数据相吻合的地块中的高度度量。对GLAS波形进行详细分析之后,再进行非参数回归建模,以估算最大树冠高度以及80%和90%的植被高度。现有方法进行了调整,包括NDVI(作为树冠覆盖代理)和交互作用术语,以增加在热带稀树草原生态系统中的效用。我们的主要发现是,仅采用针对森林的方法不会产生足够的结果。与百分位高度度量相比,估计的最大树冠高度具有更高的准确性。包含NDVI和交互作用项比第80和第90个百分位数高度模型改善了更多的最大树冠高度模型。在平坦地形上较高的看台效果最好,而在陡峭地形上较短的看台效果最差。我们的工作证明了波形雷达评估热带稀树草原植被结构属性的能力。在这种生态系统中使用这种技术进行冠层高度建模的挑战不仅限于地形坡度,还包括低冠层覆盖和短高度的相互作用影响。因此,我们需要热带草原地区的特殊模型,以便使用激光雷达对陆地植被结构进行全球评估。对于以后的研究,我们建议仔细研究冠层覆盖对百分位冠层高度模型的非显着影响,尤其是对后续生物量模型的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号