首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer
【24h】

Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer

机译:从高级沿轨扫描辐射计得出的地表温度的长期准确性评估

获取原文
获取原文并翻译 | 示例
           

摘要

The accuracy of land surface temperatures (LSTs) derived from the Advanced Along-Track Scanning Radiometer (AATSR) was assessed in a test site in Valencia, Spain from 2002 to 2008. AATSR LSTs were directly compared with concurrent ground measurements over homogeneous, full-vegetated rice fields in the conventional temperature-based (T-based) method. We also applied the new radiance-based (R-based) method over bare soil and water surfaces, where ground LST measurements were not available. In the R-based method, ground LSTs are simulated from AATSR brightness temperatures in the 11μm band and radiative transfer simulations using surface emissivity data and atmospheric water vapor and temperature profiles. The accuracy of the R-based ground LSTs depends on how well the profiles used in simulations represent the actual atmosphere at the time of AATSR observations. This can be checked with the difference δ(T_(11)-T_(12)) between the actual AATSR and the profile-based simulated difference in the 11 and 12μm brightness temperatures (T_(11) and T_(12), respectively). We found that for -0.6K<δ(T_(11)-T_(12))<0.6K, the R-based LSTs were accurate within ±1.0K and can be used for LST validation. For the data analyzed here, the AATSR operational algorithm overestimated the ground LST by 2 to 5K, showing that the auxiliary data utilized within the retrieval scheme (biome classification and fractional vegetation cover maps at 0.5°×0.5° resolution) should be improved and provided at the same spatial resolution as the AATSR data (1km~2). When the AATSR algorithm was optimized with biome and fractional vegetation cover selected according to the nature of each surface, LST errors showed negligible average biases and rmse=±0.5K for full vegetation and water, and ±1.1K for bare soil. Furthermore, we checked an alternative algorithm explicitly dependent on emissivity, which provided accurate LSTs for all the surfaces studied, with small biases, rmse from ±0.4 to ±0.6K and most LST errors within ±1.0K. The algorithm requires monthly emissivity maps at 1km~2, which can be derived from classification and fractional vegetation cover estimated from optical AATSR data. The results of this paper show the high LST accuracy achievable with AATSR data in ideal conditions. While it is necessary to establish and maintain highly homogeneous T-based validation sites, the R-based method provides an alternative for the semi-operational, long-term evaluation of LST products at global scale, since it is applicable over surfaces with varied LST and atmospheric regimes where ground LST measurements are not feasible.
机译:从2002年至2008年,在西班牙巴伦西亚的一个测试地点评估了从先进的沿轨扫描辐射计(AATSR)得出的地表温度(LST)的准确性。将AATSR的LST直接与同时进行的均匀,全地形测量进行了比较。植被稻田采用常规的基于温度的(基于T的)方法。我们还对没有地面LST测量值的裸露土壤和水表面应用了新的基于辐射率(基于R)的方法。在基于R的方法中,使用表面辐射率数据以及大气水汽和温度曲线,根据11μm波段的AATSR亮度温度和辐射传输模拟,模拟了地面LST。基于R的地面LST的准确性取决于在AATSR观测时模拟中使用的剖面表示实际大气情况的程度。可以通过实际AATSR与11和12μm亮度温度(分别为T_(11)和T_(12))中基于轮廓的模拟差异之间的差异δ(T_(11)-T_(12))进行检查。 。我们发现,对于-0.6K <δ(T_(11_-T_(12))<0.6K,基于R的LST准确度在±1.0K以内,可用于LST验证。对于此处分析的数据,AATSR运算算法将地面LST高估了2至5K,这表明应改进并提供在检索方案(生物组分类和0.5%×0.5°分辨率的植被覆盖图)中使用的辅助数据。具有与AATSR数据相同的空间分辨率(1km〜2)。当根据每个表面的性质选择生物群落和部分植被覆盖率来优化AATSR算法时,LST误差显示出可忽略的平均偏差,全植被和水的均方根误差(rmse =±0.5K),裸土的均方根误差为±1.1K。此外,我们检查了一种明显依赖于发射率的替代算法,该算法可为所有研究的表面提供准确的LST,偏差很小,均方根值从±0.4到±0.6K,大多数LST误差在±1.0K之内。该算法需要每月在1km〜2处的发射率图,这可以从分类和根据AATSR光学数据估算的植被覆盖率中得出。本文的结果表明,在理想条件下,利用AATSR数据可以获得较高的LST精度。虽然有必要建立和维护高度均一的基于T的验证位点,但基于R的方法适用于LST产品在全球范围内的半操作性,长期评估,因为它适用于LST变化的表面地面LST测量不可行的大气条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号